
Građevinar 10/2015

959GRAĐEVINAR 67 (2015) 10, 959-973

DOI: 10.14256/JCE.1383.2015

Authors:

Numerical model for analysis  
of stress-ribbon bridges

Primljen / Received: 18.6.2015.

Ispravljen / Corrected: 10.9.2015.

Prihvaćen / Accepted: 19.9.2015.

Dostupno online / Available online: 10.11.2015.

Prof. Jure Radnić, PhD. CE
University of Split
Faculty of Civil Engineering, Arch. and Geodesy
jure.radnic@gradst.hr

Prof.Domagoj Matešan, PhD. CE
University of Split
Faculty of Civil Engineering, Arch. and Geodesy
domagoj.matesan@gradst.hr

Domagoj Buklijaš-Kobojević, MCE
University of Split
Faculty of Civil Engineering, Arch. and Geodesy
domagoj9638@gmail.com

Subject review
Jure Radnić, Domagoj Matešan, Domagoj Buklijaš-Kobojević

Numerical model for analysis of stress-ribbon bridges

A newly developed numerical model for the analysis of stress-ribbon bridges under 
the short-term (static and dynamic) and long-term loads and actions is presented in 
the paper.  The model can simulate main nonlinear effects of the behaviour of these 
structures, including nonlinear behaviour of materials, change in the structure geometry, 
phased construction, prestressing, etc.  Basic solutions for the stress-ribbon bridge over 
the Cetina River near Zadvarje, and some results of its analysis using the developed 
numerical model, are presented.
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Numerički model za analizu prednapetih provješenih mostova

U radu je prikazan razvijeni numerički model za analizu prednapetih provješenih mostova 
opterećenih kratkotrajnim statičkim, dinamičkim i dugotrajnim opterećenjenjima i 
djelovanjima. Model simulira najvažnije nelinearne efekte ponašanja takvih konstrukcija, 
uključujući nelinearno ponašanje gradiva, promjene geometrije konstrukcije, nastajanje 
konstrukcije u fazama, prednapinjanje i sl. Prikazana su osnovna rješenja provješenog 
mosta preko rijeke Cetine kod Zadvarja, te neki rezultati njegovog proračuna s pomoću 
razvijenog numeričkog modela.

Ključne riječi:
provješeni most, numerički model, statička analiza, dinamička analiza, analiza za dugotrajno opterećenje i djelovanje

Übersichtsarbeit
Jure Radnić, Domagoj Matešan, Domagoj Buklijaš-Kobojević

Numerisches Model zur Analyse von Spannbandbrücken

In dieser Arbeit wird ein numerisches Model dargestellt, das zur Analyse von Spannbandbrücken 
unter kurzfristigen statischen und dynamischen sowie unter langfristigen Lasten und 
Einwirkungen entwickelt wurde. Das Model simuliert die wichtigsten nichtlinearen Effekte 
des Verhaltens solcher Konstruktionen, einschließlich des nichtlinearen Materialverhaltens, 
der Veränderungen geometrischer Abmessungen, der einzelnen Entstehungsphasen 
des Tragwerks, des Vorspannens etc. Dabei sind die wichtigsten Lösungsvarianten der 
Spannbandbrücke über den Fluss Cetina bei Zadvarje dargestellt und auf dem entwickelten 
numerischen Model beruhende Resultate entsprechender Berechnungen erläutert.

Schlüsselwörter:
Spannbandbrücke, numerisches Model, statische Analyse, dynamische Analyse, Analyse für langzeitige Lasten und 
Einwirkungen
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1. Introduction

Tension ribbon bridges, or the so called stress-ribbon bridges, 
rank among the oldest types of bridges. In such bridges, 
the superstructure (catenary) also assumes the role of the 
pavement structure. The construction of modern bridges with 
such load bearing systems started in the mid 1970s. According 
to the superstructure solution used, these bridges can generally 
be classified into two groups. The first group includes simple 
structural solutions with two tendons or steel catenaries 
supporting the deck slab. These systems exhibit a small flexural 
stiffness and great deformability, and are highly sensitive to 
dynamic loading. The second group involves modern solutions 
in which load-bearing tendons lie within the prestressed 
reinforced-concrete deck slab, with which they are linked 
either continuously or at specified points. Such systems are 
characterised by lower flexural and torsional stiffness, and are 
less sensitive to deformations and dynamic loads.
The usual deflection (f) to span (L) ratio of stress-ribbon 
bridges is f/L = 0,02 to 0,03 (Figure 1). To take into account the 
serviceability requirements, the maximum longitudinal grade of 
stress-ribbon bridges is in most cases taken to be 12 %. Most 
existing stress-ribbon bridges are destined for the pedestrian-
bicycle traffic only. This is due to a significant change in bridge 
grade above the supports, and to problems with excessive 
displacements and vibrations during passage of heavy vehicles.
The basic advantage of stress-ribbon bridges is their rationality, 
rapid semi-prefabricated construction, favourable appearance, 

minimum depth of the span structure, harmonious blending with 
the surrounding natural environment, rational maintenance, and 
minimum impact to environment during construction. Drawbacks 
of such bridges are namely their high deformability, sensitivity to 
vibrations, and considerable horizontal forces acting on abutments.

Figure 1. Typical stress-ribbon bridge

Due to their specific features and small number compared to 
other existing bridges, very few experts are currently involved 
in the design and realisation of stress-ribbon bridges. The 
idea for the first modern concrete stress-ribbon bridge was 
presented in 1958 by the well known German engineer Urlich 
Finsterwalder as a solution for the bridge over the Bosporus. Jiri 
Strasky [1], the greatest designer and builder of stress-ribbon 
bridges, developed in the late twentieth century a successful 
semi-prefabricated construction procedure for such bridges, 
involving the following construction stages: 
 - substructure construction, 
 - tensioning of load-bearing tendons, 
 - assembly of prefabricated concrete slabs and prestressed 

tendons, and placing of additional traditional deck slab 
reinforcement, 

 - monolithisation of semi-prefabricated deck slab elements,
 - tensioning of tendons and grouting (Figure 2). 

Figure 2. Realization phases and stress change in load-bearing structure of bridge
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During construction of a stress-ribbon bridge, its cross 
section and load-bearing system changes and, over time, the 
stress in concrete, traditional reinforcement, and tendons, 
also changes due to rheological effects of concrete (Figure 2). 
At the superstructure realization stage, the entire weight of 
prestressed concrete slabs, in situ concrete, reinforcement, and 
tendons, is assumed by load-bearing tendons acting as pure 
catenaries. The catenary deflection decreases with an increase 
in its initial sag (f) and with reduction of the permanent load. 
The stiffness and bearing capacity of the superstructure 
increase after hardening of the in situ concrete and tensioning 
of prestressed tendons. The bridge level lifts (the sag reduces) 
and the force level in load-bearing tendons decreases during the 
prestressed tendon tensioning process. The prestressing can be 
conducted in phases provided that the first phase is conducted 
as soon as practicable so as to reduce cracking due to shrinkage 
and wind load. After the final prestressing, the concrete has 
to have a sufficient compressive prestress so as to avoid 
occurrence of tension (concrete cracking) at service load. Cracks 
in the superstructure can however be expected at limit states, 
especially at connection to the abutments. This part of the bridge 
is subjected to high stresses, and so a particular attention must 
be paid to its shaping and calculation. In fact, the bridge behaviour 
next to supports is closer to cantilever behaviour, while it is 
closer to catenary behaviour in zones close to the centre of the 
bridge. Crack widths next to supports are controlled by adequate 
support selection, careful shaping, adequate reinforcement 
details, favourable guidance of tendons, etc. Some possible 
superstructure shaping alternatives can be found in [1].
Over time, shrinkage and creep occur in concrete, while relaxation 
of stress occurs in tendons. The bridge sag is reduced due to 
concrete creep. The entire process results in the decrease of 
the total prestressing force, and in redistribution of stress in 
the concrete, traditional reinforcement, prestressed tendons, 
and load-bearing tendons. As a very young in situ concrete is 
pretensioned (concrete in prefabricated concrete slabs is older), 
the influence of concrete creep is significant. Because the creep 
of in situ concrete is greater than that of prefabricated concrete, 
the former transfers a part of its initial stress to the prefabricated 
concrete and traditional reinforcement. The force drops in 
prestressed and load bearing tendons due to their shortening 
resulting from the reduced sag of the bridge. Because of force 
drop in load-bearing tendons, prestressed tendons take on a part 
of the bridge’s weight from the load-bearing tendons.
A significant problem with stress-ribbon bridges are their excessive 
vibrations and displacements, caused by traffic load and wind. A 
stress-ribbon bridge can be stabilised by changing the stiffness 
to bridge mass ratio, by increasing the superstructure mass, and 
by increasing damping during vibration of the bridge (by installing 
dampers, adequate structural details, etc.). The global load-bearing 
system of the bridge is closest to catenary in vertical plane, while in 
horizontal plane it is closest to the thin-walled girder peripherally 
restrained on both sides. Due to small superstructure thickness, 
stress-ribbon bridges exhibit a small flexural stiffness in vertical 
plane. This results in significant displacements when a point 

load is transferred along the bridge (group of people or a heavy 
load). Bridges must also exhibit a sufficient stiffness in horizontal 
plane. In fact, the torsional and horizontal flexural stiffness of 
the bridge directly influence its swinging and buckling. Greater 
superstructure stiffness is achieved by increasing the bridge width 
and by strengthening the deck slab cross section edges and, in 
case of larger spans, by installing additional external tendons. It is 
recommended to keep torsional and horizontal (swinging) vibration 
modes sufficiently away from the first vertical modes, so as to 
prevent their superposition. It is also recommended to keep the 
first vibration modes outside of the walking step period. Although 
this last requirement is seldom respected, many bridge examples 
show that the mass and internal damping are quite sufficient for 
their stabilisation with regard to vibrations. To reduce problems 
related to vibrations and aerodynamic stability of stress-ribbon 
bridges, favourable aerodynamic bridge cross-section shapes are 
nowadays used, and bridge behaviour is tested in wind tunnels. 
Unfortunately, no modern stress-ribbon bridge has so far been 
built in Croatia.
In order to provide for considerable deformability of stress-
ribbon bridges, the issue of geometric nonlinearity (large 
displacements) must be taken into account during their design. 
Many commercial software for the design of these bridges 
are now available. However, just a few of them are capable of 
modelling their actual behaviour under the short term (static and 
dynamic) and long-term loads and actions. One of the models 
for preliminary design of stress-ribbon bridges is presented in 
[2]. Regulations for the design and calculation of stress-ribbon 
bridges are so far available in Japan only [3]. Some research and 
investigations related to these bridges are given in [4-8].
This paper first presents a nonlinear numerical model that 
has been developed for the analysis of stress-ribbon bridges 
subjected to short-term and long-term loads and actions. The 
model can accurately simulate main nonlinear effects of the 
bridges under the mentioned loads and actions, including the 
influence of the change in the structure geometry, prestressing, 
structure forming in stages, rheological properties of concrete, 
tensioned steel relaxation, etc. The paper then briefly presents 
main design solutions for the planned stress-ribbon bridge over 
the Cetina canyon near Zadvarje, as well as some results of its 
analysis using the described numerical model. Main conclusions 
are presented in the final part of the paper.

2. Developed numerical model

2.1. General

The models relevant for the analysis of stress-ribbon bridges 
subjected to short and long-term loads and actions, which are capable 
of accurately describing their real behaviour under service conditions 
and at failure, must adequately model at least the following:

 - spatial geometry of the load-bearing system and its stiffness,
 - main nonlinear effects of all materials,
 - change in the structure’s geometry under load (large 

displacements),
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 - change in the cross-section and bearing system of the bridge 
during construction, i.e. staged realization of the structure,

 - prestressing,
 - rheological effects in concrete (creep, shrinkage, ageing) and 

prestressed steel (prestressing force losses).

The developed numerical model for the analysis of stress-
ribbon bridges that can simulate all of the above mentioned 
effects is briefly described below.  The model is a compilation 
and upgrade of the previously developed numerical models 
for the static and dynamic analysis of structures and for the 
analysis of structures under a long-term load [9-17]. The model 
upgrade consists in its capability to model stages construction 
of structures, in a more accurate modelling of shear failure of 
concrete, and in more efficient calculation procedures.

2.2. Spatial discretisation 

The finite element method is used for the spatial discretisation of 
structure.  The tension ribbon is modelled by the element of a thin 
degenerated shell, which describes its behaviour quite accurately.  8- 
and 9- node elements are used, with the layered material modelling 
across the shell thickness (Figure 3). The reinforcing steel is modelled 
as a separate layer of an appropriate thickness, with the strength 
and stiffness presented in the bar direction only  [9-11].
By spatial discretisation and using the finite element method, 
the dynamic structural equilibrium equation can be written as 
follows

 (1)

where u are unknown node displacements, u.  are velocities 
and ü are accelerations; M is the mass matrix, C is the damping 
matrix and R(u) is the vector of internal forces; f is the vector 
of external node forces that can be generated by the wind, 
machines, etc. (f = F(t)) or by earthquake (f = Md0

..
(t)). At that, d0

..
 

is the ground acceleration vector, and t is the time. The vector of 
internal forces R(u) can be written as follows:

 (2)

where K is the structural stiffness matrix.
In order to solve of the problem, equation (1) is reduced to:

Kx = lx (3)

where x is the characteristic vector and l is the characteristic 
value (eigenvalue). For static problems, (1) is reduced to

R(u) = Ku = f  (4)

where f is the external static load.

2.3. Time discretisation

The implicit Newmark algorithm, developed in its iterative form 
by Hughes [18], is used for solving equation (1). The equilibrium 
equation requirements are satisfied in time tn+1=tn+Δt, i.e. in the 
(n+1) time increment [9-11].

 (5)

where

  
 (6)

 
 

 (7)

In the above expressions, Δt is the time step, and n is the time 
increment;  and  are assumed displacement and velocity 
values, and  un+1 and  are their corrected values; β and γ are 
the parameters determining the stability and accuracy of the 
method. By inserting (6) and (7) into (5), and by introducing the 
incremental-iterative procedure for general nonlinear problem 
solving, the so called effective static problem is obtained:

 (8)

where the effective tangent stiffness 
matrix  is calculated in time t using

 (9)

and the effective load vector f* using

 (10)

In the above expressions, n denotes the 
time step, and i the iteration step; Δu is the 
displacement increase vector. The implicit 
Newmark algorithm for iterative problem 
solving is presented in Table 1.

Figure 3.  Finite shell element concept: a) layered model across the shell depth; b) degenerated 
three-dimensional shell element
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2.4. Modelling change in structure geometry 

The change in structure geometry is determined using the 
so called updated Lagrangian procedure that is based on the 
following assumptions [11]:
 - External load is applied in increments. An iterative calculation 

procedure is applied for each increment until the unbalanced 
force vector is sufficiently small. Once the convergence criterion 
is satisfied, the unbalanced force vector is added to the next 
external load increment and the iteration procedure is resumed.

 - The traditional Lagrange procedure is used in each iteration 
step: the state of variables is defined as related to the state 
at the beginning of the iteration procedure.

 - At the end of each iteration step, the state of variables is 
updated (redefined) as related to the state at the end of the 
iteration step considered.

The geometric nonlinearity model with large displacements 
and small deformations is included. As previously stated, the 

influence of large displacements is covered with transformations 
of displacement and force (stress) components between the 
global and local coordinate system. In fact, assuming that the 
increase in displacement within each iteration step is small, 
it can be stated that there is a linear dependence between 
deformation and displacement. This greatly simplifies and 
reduces the calculation procedure. The use of the local 
coordinate system for defining the constitutive material model 
also simplifies the analysis for the cases when materials exhibit 
anisotropic properties.

2.5. Material model for short-term static load

2.5.1. Model for concrete

A very simple concrete model based on its basic parameters is 
used [9-11] (uniaxial compressive and tensile strength, elastic 
modulus and Poisson ratio). A graphical interpretation of the 
model is given in Figure 4.

Table 1. Implicit Newmark algorithm for iterative problem solving

(1) For the time step (n+1), add the iteration step i = 1

(2)

Calculate vectors for assumed displacements, velocities, and acceleration at the beginning of the time step, using known values 
from the previous time step:

 

(3)

Calculate effective residual forces :

                     

(4)

Calculate the effective stiffness matrix  (if necessary):

 

(5)

Calculate the displacement increment vector :

 

(6)

Correct assumed displacement, velocity, and acceleration values:

 

(7)

Control convergency of the process:
If Du1 meets the convergency criterion:

  

pass on to the next time step ("n" is replaced with "n+1" and then pass on to the solution step (1)). The solution in time tn+1 is:

  

 If the convergency criterion is not satisfied, the iteration procedure with correction of displacement, velocity and acceleration 
values is continued ("i" is replaced with "i+1", and the operation continues with the solution step (3)).
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Modelling of concrete in tension
The linear-elastic behaviour of concrete is assumed until its 
tensile strength is reached. It is assumed that cracks can occur 
only in planes that are perpendicular to the mean plane of the 
shell. It is assumed that each concrete segment is in the state 
of plane stress. A model of smeared cracks is adopted, i.e. it 
is assumed that concrete remains in continuum even after 
cracking. The so called fixed orthogonal cracks model is used. 
The partial and full closure of cracks in unloading is modelled, 
as well as the reopening of previous cracks due to repeated 
load. The contribution of tensile stiffness of uncracked concrete 
between cracks is simulated in a usual manner, i.e. indirectly 
by the "descending curve" of the s - e diagram for concrete in 

tension. The simulation of shear stiffness of cracked concrete 
(the effect of aggregate interlock and friction between the crack 
plains) is modelled by reducing the shear modulus (G12, G13, G23) 
depending on the strain, perpendicular to the crack plane.

Modelling of concrete in compression
The theory of plasticity is used for modelling concrete behaviour 
in compression. The linear-elastic behaviour of concrete is 
assumed in the beginning of the loading process, until the 
yield condition is satisfied. After that, the plastic behaviour of 
concrete is assumed. The so called associated flow is used, i.e. 
the normality of the plastic deformation vector with regard to 
yield surface is assumed. The criterion of concrete crushing in 

Figure 4.  Graphical representation of the adopted concrete model: a) one-dimensional presentation; b) 2D presentation in the field of principal 
stresses

Figure 5. Reinforcement modelling: a) reinforcement layer; b) s-e relationship for steel; c) spreading of reinforcing bars
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compression is defined through strain components. The elastic 
behaviour is assumed in unloading. No concrete stiffness is 
adopted after concrete crushing.

2.5.2. Reinforcement model

The reinforcement modelling method [9-11] is graphically 
presented in Figure 5. Reinforcing bars are modelled as separate 
steel layer of equivalent (normalised) thickness, spaced at an 
appropriate (normalised) distance from the central plane of 
the shell. The stress can occur only in the bar direction. A full 
compatibility between the reinforcement displacement and the 
surrounding concrete was assumed (no bar slipping possibility). 
The steel behaviour is described using the bi-linear s - e  
relationship, equally for compression and tension. An elastic 
behaviour was assumed in unloading, with an initial elastic 
modulus. Bar failure occurs when the strain in the direction of 
their spreading exceeds the specified limit value.

2.6. Material model for dynamic load

The material models described in section 2.4, extended to 
include effect of strain rate on the concrete and steel behaviour, 
is used to analyse of structure under dynamic load. The model, 
briefly described below, is presented in detail in [17].

2.6.1. Concrete model

The adopted model, presented in Figure 6, covers a simple 
dependence of compressive and tensile strength (representing 
the yield surfaces), and the initial elastic modulus of concrete as 
related to the equivalent concrete strain rate. In the scope of the 
numerical procedure, the equivalent strain rate   is calculated in 
each time step of the respective time domain as follows:
 

 (11)

Current compressive and tensile strength values and elastic 
modulus values for concrete are calculated, as related to , in 
each integration point of each element. The same dependence 
of mechanical properties of concrete on the strain rate is 
adopted for all concrete types. The limit (failure) strain of 
concrete and the Poisson ratio are adopted as fixed values, 
i.e. as values independent from the concrete strain rate. 
Reduction of concrete strength at repeated load is not taken 
into account.

2.6.2. Reinforcement model

A schematic presentation of the steel model is given in Figure 
7. The yield limit is not fixed, i.e. it is dependent on the steel 
elastic strain rate  (in the bar spreading direction). The 
relationship between the dynamic fad and static fas yield limit 
(strength) is assumed to be the same for all steel types. It is 
assumed that the modulus of elasticity and failure strain of 
steel are fixed values, i.e. values that are independent from 
strain rate. 

Figure 7.  Graphical presentation of steel model under dynamic load 
conditions

2.7.  Modelling of staged 
construction

For each phase of construction of the 
structure (change in cross section and 
load bearing system, prestressing, etc.) 
its spatial geometry and stiffness is 
modelled, and the stress-strain state 
is calculated in all materials for the 
loads and actions in the phase under 
consideration. This state is adopted as 
an initial state for the subsequent phase 
in which new load bearing elements and 
new load values are encountered. Thus, 
in each bridge construction phase, its 
current stiffness and displacements are 

Figure 6.  Graphical presentation of concrete model under dynamic load conditions: a) 
presentation in the field of principal stress values; b) one-dimensional presentation
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modelled, i.e. the current stress-strain state in the structure is 
determined and stored.

2.8. Modelling of rheological effects of concrete

A detailed model description is given in [11] and its shorter 
presentation is given below.

Creep
The Glanville and Dischinger method is used for the calculation of 
uniaxial strain by creep. The method is based on the assumption 
that the creep rate is a function of the current uniaxial stress of 
concrete and time t elapsed after the loading, i.e.

 (12)

If the time is divided into discrete time intervals Dt, with tn=t 
i tn+1=t+Dt, then the incremental version of equation (12) 
assumes the following form

 (13)

where 
 
denotes an increase in creep strain between times tn 

and tn+1,  is the instantaneous mechanical strain of concrete 
over time tn+1 (can be a nonlinear stress functions),  is the 
increase in creep coefficient between times tn and tn+1, 

 
is 

the creep coefficient for time tn+1 and 
 
is the creep coefficient 

for time tn. The increment of creep strain  is calculated 
based on conditions valid at the beginning of the oncoming 
time increment tn+1. The values according to [19] are used for 
creep coefficients, and so the expression (13) can be written as 
follows

 (14)

where  denotes the basic creep value, while  denote 
coefficients that describe the time of creep under load. 

Shrinkage
The uniaxial shrinkage of concrete described in [13] and used in 
this paper can be expressed as:

 (15)

where  denotes the uniaxial shrinkage strain over time t,  is 
the basic shrinkage value, and  is the coefficient describing the 
time in which shrinkage takes place. In the scope of an iterative 
time algorithm, an increase in shrinkage strain  between 
two neighbouring times tn and tn+1 can be determined as follows:

 (16)

where the coefficients   correspond to times tn and tn+1. 
In the context of the shell problem under consideration, it is 
assumed that the concrete shrinkage takes place in defined 

orthogonal directions x, y in the shell plane and, at that, 
shrinkage strain increments  are calculated for particular 
directions as shown for the one-dimensional problem.

Ageing
The concrete ageing strain is assumed in an indirect way, by 
increasing over time the initial elastic modulus and strength of 
concrete. In fact, current mechanical properties of concrete, i.e. 
the time "strengthened" material, is taken into account during 
selection of the s - em relationship in the considered time tn+1,. 
A schematic presentation of concrete ageing for a uniaxial 
elastoplastic relationships - em is shown in Figure 8.

Figure 8.  Schematic presentation of concrete ageing for uniaxial 
elastoplastic relationship s - em

In Figure 8 tn+1 denotes the current time under consideration and t0 
denotes the initial time; fc stands for the design compressive strength 
of concrete and ft denotes the design tensile strength of concrete; 
E denotes the uniform elastic modulus of concrete in compression 
and tension; ec denotes the design concrete crushing strain in 
compression and et denotes the design concrete crushing strain in 
tension. The following is updated in each time step: compressive 
strength, tensile strength, elastic modulus, and crushing strain. The 
change in shear modulus of concrete is assumed by the change in 
elastic modulus. The Poisson ratio is assumed to be invariable over 
time.

Temperature
If the effect of a known temperature history is considered, then 
temperature increments are defined in accordance with the 
time discretisation selected (Figure 9). 

Figure 9. Temperature history
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Also, the starting point is the known relationship between the 
stress vector s and the vector of mechanical strain of concrete em in 
each time increment considered, i.e. the known current constitutive 
model of material which includes the ageing effects (Figure 10).

Figure 10.  Stress-strain relationship in considered time step (one-
dimensional presentation)

2.9.  Numerical algorithm for analysis of structure 
under long-term static loads and actions

The incremental-iterative equilibrium equation for the structure 
under consideration, corresponding to the current geometry and 
material characteristics, can be written in the following form [9-11].

 (17)

where the index n denotes the time increment and i stands for 
the iteration step.  denotes the tangential stiffness matrix 
that effect the large displacements.  denotes the vector 
of increase in node displacements, and  is the vector of 
increase of equivalent node forces:
  

 (18)

In the above expression  denotes the vector of increase of 
external forces,  is the vector of increase of equivalent node 
forces due to non-mechanical stran  between the times tn+1 
and tn (due to creep, shrinkage, ageing, and temperature), and  
stands for unbalanced forces from the preceding time increment 
n. The vector  can be calculated using the expression

 (19)

where   denotes the tangent matrix of the displacement-
strain relationship, while  denotes the tangent matrix of 
the stress-strain relationship. The increment of the total non-
mechanical strain  is

 (20)

and it is composed of the increment of creep strain , 
shrinkage , ageing , and temperature changes .

The total non-mechanical strain is

 (21)

The increase in total strain  can be calculated as follows

 (22)

And the total current strain is

 (23)

The current mechanical strain  is

 (24)

The problem solving diagram for the long-term static loads and 
actions is shown in Figure 11.

Figure 11.  Problem solving diagram for long term loads and actions in 
incremental-iterative form
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2.10.  Modelling of prestressing and losses of 
prestressing force 

A detailed description of the model is given in [9-14], and its 
brief presentation is given below.

2.10.1. Tendon geometry and material model

The tendon geometry is defined with coordinates of points 
traversed by the tendon axis (Figure 12). The tendon position 
within the final shell element is shown in Figure 13. 

Figure 12. Tendon geometry

Figure 13. Prestressed tendon embedded in the shell element

In case of pretensioned structures, the unyielding connection is 
ensured between the concrete and prestressed steel, just like in case 
of connection between the concrete and reinforcing steel. In case 
of posttensioned structures, the unyielding connection between 
the tendon and concrete is ensured only after cable tensioning and 
grouting, i.e. after grout hardening (the so called bonded tendons). 

If cables are not grouted, there is no design connection between 
the concrete and tendon (the so called unbonded tendons). The 
following steps are required for modelling mechanical effects of 
the connection between concrete and tendon: 
 - add contribution of tensioning to the global stiffness, 
 - calculate strain increase due to tensioning effect, as an 

external load affecting the structure, 
 - calculate the final force in tendon and generate internal 

forces due to tensioning. 

The adopted stress-strain relation for prestressed steel is 
presented in Figure 14.

2.10.2.  Modelling of prestressing force losses and force 
transfer from tendon to concrete

Force losses due to friction and dowel slip are simulated in 
accordance with [19] (Figure 15). Losses due to relaxation of 
prestressed steel are modelled according to [20] (Figure 16). 
Force losses due to instantaneous strain of concrete, and 
losses due to concrete creep and shrinkage, are automatically 
included in the model. The prestressing is modelled by the initial 
tendon strain, which corresponds to the prestressing force. The 
prestressing force is applied in the system as equivalent nodal 
forces. Once the equilibrium for prestressing is established, the 
system is solved for other external loads.

Figure 15.  Friction-generated change in prestressing force along 
tendon

Figure 16.  Calculation of initial tendon stress losses at repeated load 
due to prestressed steel relaxationFigure 14. Stress-strain link for prestressed steel
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2.11.  Critical review of adopted assumptions and 
accuracy of developed numerical model

A numerical model that would describe with complete accuracy 
the real behaviour of the studied structures, which is obviously 
highly complex, has not as yet been developed. The objective 
of the presented model is to provide a sufficiently realistic 
and technically acceptable simulation of the real behaviour 
of the considered structures. At the same time the aim is to 
keep the model relatively simple and adjusted to practical 
use, i.e. to include the lowest possible number of parameters. 
Assumptions adopted in the structural material models, and 
assumptions regarding the geometry of the structure, its 
construction stages, loads and actions, and design algorithms, 
are such that the presented numerical model still ensures a very 
good correspondence with numerous experimental results and 
results of other numerical models, even for the cases of deep 
nonlinear behaviours (see references [9-17]). Nevertheless, an 
additional verification of this model is considered necessary. 
Further improvements in the accuracy of the model are possible, 
and some of them are indicated below. These improvements 
would certainly contribute to its complexity and would involve 
incorporation of parameters that in most cases can not be 
accurately defined for analysis of practical structures.

 - more adequate concrete modelling in compression, tension, 
and shear,

 - more adequate modelling of rheological properties of 
concrete, and incorporation of the influence of repeated 
(cyclical) load for all materials,

 - more adequate modelling of tendons and concrete-tendon 
connection, and change of the force in tendon over time,

 - improvement of numerical calculation procedures, etc.

3.  Stress ribbon bridge over the Cetina River at 
Zadvarje

The Cetina River has an up to 150 m deep and steeply carved 
riverbed in its lower reaches, in the immediate vicinity of 
Zadvarje, approximately 15 km upstream from Omiš. At 
this locality, the Cetina Canyon is amazingly beautiful and 
attractive, quite favourable for white-water rafting, climbing 
and other extreme sports. The natural beauty of the landscape 
is further emphasized by magnificent Velika and Mala Gubavica 
waterfalls, storming down with an incredible noise onto the 
riverbed approximately 60 m below. Every visitor will certainly 
remain trilled by this unique and wildly romantic spectacle.
In the scope of its tourist development plans, the Zadvarje 
municipality hopes to benefit from the European funding and 
build at the Gubavica Waterfall locality a pedestrian and bicycle 
bridge, which would also link the Cetina banks and contribute to 
the development of the wider region.
The bridge would be located about 85 m to the downstream of 
the waterfall, in a sound rock zone less influenced by the wind. 
In this zone, the banks of the river are about 250 m apart at 
the ground surface level. To reduce the bridge span and wind 

load, i.e. to reduce its price and obtain a spectacular view of the 
waterfalls, the bridge grade is lowered for approximately 15 m 
with respect to the surrounding terrain level. At this level, the 
bridge span is considerably reduced.
The bridge solution based on the tension ribbon system (Figure 
17) was selected as it presents many advantages compared 
to other possible alternatives. The bridge is 150 m in span and 
3 m in total width, with the sag of f = 6,5 m (f/L = 0,043). A 
somewhat greater bridge sag was adopted so as to increase 
the rationality of the solution, and to enable its appropriate use. 
The deck slab is composed of prefabricated concrete elements, 
made to act compositely with in situ concrete. At most of the 
bridge length the deck slab thickness is 26 cm and it increases 
to 94 cm toward the abutments.

Figure 17.  Visualisation of stress-ribbon bridge over the Cetina near 
Zadvarje

The bridge has four load-bearing tendons, each 2400 mm2 (16 x 
0.6") in area, and eight pretensioned cables. Four pretensioned 
tendons are 1050 mm2 (7 x 0.6") in area, two occupy an area 
of 1800 mm2 (12 x 0.6"), while the area of the remaining two 
is 2400 mm2 (16 x 0.6"). This pretensioning is to be made in 
two phases: one and seven days after construction of the 
monolithic bridge. The area of the prefabricated concrete cross-
section amounts to 0.2276m2 in span zone, and 0.6332m2 of 
the in situ concrete (in span zone). Prefabricated elements are 
made of concrete class C 55/67, and the in situ concrete class C 
40/50. The traditional longitudinal reinforcement of the in situ 
concrete is about 1 % of the concrete cross-section area. Bridge 
abutments are relatively small concrete blocks, each anchored 
into the stone cliff by 16 anchors measuring 16 x 0.6", with the 
total force of 16x2190 = 26280 kN. The vertical compressive 
force of 17017 kN is transferred from the foundations onto the 
cliff (stla,rd = 0,8 MPa). Some details of the solution applied in the 
abutment zone are shown in Figure 19.
Using the numerical model described in Section 2, and the 
spatial discretisation according to Figure 20 with 1820 shell 
and 1400 cable elements (with denser distribution near the 
supports), the bridge was calculated for permanent load and 
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actions (self-weight, additional permanent load, prestressing, 
creep and shrinkage), variable actions (traffic load, temperature 
actions, and wind load) and seismic actions. Ultimate limit states 
and serviceability limit states were checked. All calculations 
were conducted according to prevailing Croatian standards [19, 
22-32]. The traffic load of 3 kN/m2 was adopted (for pedestrian 
load over the entire bridge span, i.e. 3.5 kN/m2 for the half-
bridge span load). The wind load adopted for pedestrian traffic 
amounts to Wz=0,4 kN/m2, Wx=Wy=1,25 kN/m2. Creep curves 
obtained from creep test at early loading [33] were used for 
the first prestressing phase (concrete at one day of age). Creep 
curves according to [19] were used for the second prestressing 
phase.

Figure 18. Basic solutions of stress-ribbon bridge over the Cetina at Zadvarje: a) mid-span cross section; b) plan view; c) longitudinal view

Figure 19.  Some bridge solutions at abutments: a) resulting forces in 
tendons and ground anchors; b) tendon guiding details

Figure 20.  Spatial discretisation of bridge: a) side view; b) plan view; 
c) spatial view
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A number of combinations of relevant loads and actions 
are analysed (permanent load, prestressing, three cases 
of pedestrian load, four cases of wind load, three cases of 
temperature action, and the shrinkage, creep and ageing 
of concrete over time), including construction in stages, 
with combination coefficients according to [19]. Only some 
calculation results are presented in the paper. Figure 21 shows 
stresses in individual parts of the structure in the mid-span of 
the bridge for quasi-permanent load (1,0 · G + 1,0 · P + 0,5 · T-25

 

+ shrinkage and creep). Deflection and stresses in the mid-span 
of the bridge are presented in Table 2 for some loads expressed 
in time intervals.
The ultimate limit state is relevant when the bridge is put to 
use (thirtieth day after construction) as the stresses in tendons 
and concrete are then the greatest. The serviceability limit 

Figure 21.  Superstructure stresses in mid-span of the bridge for quasi-permanent load: a) concrete structure; b) steel tendons; c) traditional 
reinforcement

Table 2. Deflections and stresses in mid-span of the bridge for some loads over various time intervals

Days
Deflections 
and stresses

0 1 8 8 30 30 30 10000 10000 10000 

Phases
[loading ] Construction

1st 
pretensioning 

phase

Before 2nd 
pretensioning 

phase

After 2nd 
pretensioning 

phase

Quasi-static 
load SLS ULS Quasi-static 

load SLS ULS

Deflection in mid-
span of the bridge [m] 7.00 6.85 6.77 6.60 6.49 6.56 6.67 6.20 6.30 6.55

Stresses in load-
bearing tendons  
[MPa]

1074 1026 1001 948 911 933 965 811 840 911

Stresses in 
pretensioned tendons  
[MPa]

 494 470 1214 1172 1194 1226 1052 1081 1152

Stresses in cast in 
situ concrete  [MPa]  -4.5 -2.7 -11.4 -9.4 -5.2 0.0 -3.5 0.0 0.0

Stresses in 
prefabricated 
concrete [MPa]

 -9.9 -11.3 -22.3 -22.4 -17.7 -10.9 -23.4 -17.2 -1.9

Stresses in traditional 
reinforcement [MPa]  -51.4 -77.4 -134.6 -170.0 -146.5 -112.5 -260.4 -229.4 -152.5

GSU - combination for serviceability limit state = 1,0·G + 1,0·P + 1,0·Q + 0,6·T-25
GSN - combination for ultimate limit state = 1,35·G + 0,9·P + 1,5·Q + 0,9·T-25

 

Quasi-permanent combination = 1,0·G + 1,0·P + 0,2·Q + 0,5·T-25 [shrinkage and creep are included in the model]
Q - Pedestrians over the entire bridge

Figure 22.  Some loads in serviceability combination K1 (permanent 
load is automatically included, while prestressing is 
simulated by initial deformation); a) Q0,5 – pedestrian load 
over one half span (kN/m2); b) W0,5 - corresponding wind 
load for Q0,5 (kN/m); c) ∆T+ uniform increase in temperature 
(oC)
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state (checking cracks in concrete) is relevant after most of the 
rheological effects have been realized (ten thousand days after 
construction) as the level of the prestress in concrete is then 
the smallest. The age of ten thousand days is taken as the limit 
in which over 95% of long-term effects are presumed to have 
been realized. Some calculation results for the serviceability 
combination K1 (Figure 22), K1= 1,0 · G + 1,0 · P + 1,0 · Q0,5 + 0,6 
· ΔT+ + 0,3 · W0,5, are presented in Figure 23.

Figure 23.  Some calculation results for serviceability combination of 
load K1: a) displacements – spatial view; b) longitudinal 
stresses at top edge of the bridge – presented at mid-span 
of the bridge; c) longitudinal stresses at bottom edge of the 
bridge – presented at mid-span of the bridge; d) stresses 
in load bearing tendons – presented at mid-span of the 
bridge; e) stresses in pretensioning tendons – presented 
at mid-span of the bridge

An earthquake is not relevant for calculation of this bridge. Some 
free bridge-oscillation modes and the corresponding oscillation 
periods are presented in Figure 24.

Slika 24.  Some free oscillation modes for the bridge: a) first mode, T1 
= 3,71 s; b) second mode, T2 = 2,56 s; c) third mode, T3 = 1,72 
s; d) eighth mode - torsional, T8 = 0,62 s

4. Conclusion

Stress-ribbon bridges deserve a much wider application 
in practice because of their rationality, rapid construction, 
favourable appearance, harmonious blending in with the 
environment, and small maintenance costs. Reliable analyses 
of such bridges require definition of influences with respect 
to the change in their geometry, change in cross-section 
and superstructure bearing system during construction, 
nonlinear behaviour of materials, pretensioning, rheological 
effects of materials, etc. The developed numerical model for 
the analysis of stress-ribbon bridges under the short-term 
(static and dynamic) and long-term loads and actions can 
simulate all main nonlinear effects relating to the behaviour 
of these structures. The model is relatively simple and is 
based on basic material-related parameters. It has already 
been checked on several occasions, and was successfully 
implemented in the design of the stress-ribbon bridge over 
the Cetina River at Zadvarje. The proposed bridge solution 
is considered both appropriate and rational. The developed 
numerical model and the corresponding computer software 
for the calculation of stress-ribbon bridges need further 
verification.
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