Primljen / Received: 1.1.2016. Ispravljen / Corrected: 19.6.2016. Prihvačen / Accepted: 11.8.2016. Dostupno online / Available online: 10.1.2017.

Autori:

Mr.sc. Nima Usefi, dipl.ing.građ. Iransko sveučilište za znanost i tehnologiju Odjel za građevinarstvo N_yusefi@alumni.iust.ac.ir

doktorand Foad Mohajeri Nav, dipl.ing.građ. Iransko sveučilište za znanost i tehnologiju Odjel za građevinarstvo <u>foadmohajeri@iust.ac.ir</u>

Prof.dr.sc. **Reza Abbasnia**, dipl.ing.građ. Iransko sveučilište za znanost i tehnologiju Odjel za građevinarstvo <u>abbasnia@iust.ac.ir</u>

Analiza ab elemenata u scenariju progresivnog urušavanja metodom konačnih elemenata

Stručni rad

Nima Usefi, Foad Mohajeri Nav, Reza Abbasnia

Analiza ab elemenata u scenariju progresivnog urušavanja metodom konačnih elemenata

U radu se vrednuje primjenjivost metode konačnih elemenata u analizi postupnog urušavanja ab konstrukcija pomoću dvadeset ab fizikalnih elemenata u pet različitih mjerila. Kvalitativna usporedba rezultata pokazala je dobru usklađenost eksperimentalnih rezultata s rezultatima proračuna metodom konačnih elemenata. Osim toga, mala pogreška u numeričkoj usporedbi rezultata pokazuje sposobnost modela konačnih elemenata da procijeni i predvidi ponašanje armiranobetonskih elemenata različitih mjerila u scenariju postupnog urušavanja.

Ključne riječi:

postupno urušavanje, model konačnih elemenata, armirani beton, ab elementi, uklanjanje srednjeg stupa

Professional paper

Nima Usefi, Foad Mohajeri Nav, Reza Abbasnia

Finite element analysis of RC elements in progressive collapse scenario

The applicability of the finite element method in the analysis of progressive collapse of reinforced concrete structures is evaluated using twenty RC sub-assemblages at five different scales. Qualitative comparison of results shows a good agreement between experimental results and results obtained by the finite-element method. In addition, a small error in numerical comparison of results shows the capability of the finite element model to estimate and predict behaviour of reinforced concrete elements at different scales under the progressive collapse scenario.

Key words:

progressive collapse, finite-element model, reinforced concrete, RC elements, central column removal

Fachbericht

<u>Nima Usefi, Foad Mohajeri Nav, Reza Abbasnia</u>

Finite-Elemente-Analyse von Stahlbetonelementen im Scenario des progressiven Einsturzes

In dieser Arbeit wird die Anwendbarkeit der Finite-Elemente-Methode bei der Analyse progressiver Einstürze von Stahlbetonkonstruktionen mittels 20 physikalischer Elemente in fünf verschiedenen Maßstäben bewertet. Die qualitative Gegenüberstellung der Resultate hat eine gute Übereinstimmung experimenteller Daten mit Ergebnissen der Finite-Elemente-Methode gezeigt. Außerdem weisen die geringfügigen Abweichungen beim Vergleich der numerischen Resultate die Möglichkeiten des Finite-Elemente-Modells bei der Einschätzung und Vorhersage des Verhaltens von Stahlbetonelementen verschiedener Maßstäbe im Szenario des progressiven Einsturzes auf.

Schlüsselwörter:

progressiver Einsturz, Finite-Elemente-Modell, Stahlbeton, Stahlbetonelemente, Entfernung der mittleren Stütze

1. Uvod

Povećane štete koje nastaju zbog postupnog urušavanja konstrukcija potaknule su razvoj istraživanja predvidivosti ponašanja konstrukcija. Budući da su eksperimentalni testovi postupnog urušavanja dugotrajni i skupi, numerički i teoretski modeli prikladna su alternativa za rješavanje takvih problema te su zadnjih godina u žarištu pozornosti istraživača. Gross i dr. [1] napravili su jedno od prvih teorijskih istraživanja postupnog urušavanja konstrukcija. U tom je istraživanju objašnjen program računalne analize koji je sposoban pratiti ponašanje okvirnih konstrukcija tijekom rušenja. Casciati i dr. [2] također su koristili 2D armiranobetonske okvire u kontekstu seizmičke pouzdanosti u scenariju postupnog urušavanja. U brojnim novijim istraživanjima predloženi su jednostavniji modeli za simulaciju postupnog urušavanja umjesto složenih proračuna. Sasani i dr. [3] koristili su detaljne modele za modeliranje loma armature u armiranobetonskim okvirnim konstrukcijama. Tsai i dr. [4] proveli su analizu postupnog urušavanja slijedeći proceduru linearne statičke analize koju je preporučila Administracija opće službe SAD-a (eng. General Service Administration ili GSA) [5]. Ahmadi i dr. [6] za svoju su analizu tipično predstavljali 2D i 3D modele. Nelinearne analize postupnog urušavanja, koje su primijenjene

Tablica 1. Svojstva uzoraka

u preporukama Ministarstva obrane (eng. *Department of Defense* ili DoD) i GSA-a [5, 7] i u istraživanjima koje su proveli Grierson i dr. [8] te Mohajeri i dr. [9], izvedene su pomoću dinamičkog faktora uvećanja (eng. *Dynamic Amplification Factor* ili DAF) kako bi se razmotrili dinamički učinci za vrijeme postupka proračuna. U istraživanjima koja su proveli Izzuddin i dr. [10], Powell [11], Vlassis [12], Marjanishvili i dr. [13] te Alashker i dr. [14], nelinearna statička analiza je, uz određene okolnosti, primijenjena za ispitivanje dinamičkih učinaka. U istraživanju Ellingwooda i dr. [15] analiza postupnog urušavanja napravljena je pomoću jednakosti radova unutrašnjih i vanjskih sila.

U drugim je istraživanjima uzet u obzir čimbenik ovisan o prijetnji (opasnosti) te su inicijalni događaji eksplicitno modelirani. Luccioni i dr. [16] upotrijebili su detaljne modele za analizu sloma stvarne armiranobetonske građevine uzrokovanog opterećenjem eksplozijom (eng. *blast load*). Talaat i dr. [17] razvili su pristup primjenjujući reducirane modele za simulaciju urušavanja AB konstrukcija u uvjetima potresa. Faridmehr i dr. [18] razmatraju priključke korištene prije potresa u Northridgeu kako bi procijenili svojstva čeličnih priključaka pod ekstremnim opterećenjem u postupnom urušavanju.

Nastavno na prethodna istraživanja koja su proučavala opterećenja pri udaru (explosive loads), Kwasniewski [19] je

				Presjek					
Navod	Uzorak	Mjerilo	Raspon grede	grede	Na rub	ovima	Unutar ra	spona grede	Spone
				[mm]	Tlačna	Vlačna	Tlačna	Vlačna	
[22]	IMF	1	5385	500 × 700	4Φ25	2Φ29	2Φ25	2Ф29	Ф12
	SMF	1	5232	660 × 860	7Φ25	6Ф25	4Φ25	4Φ25	Ф12
[aa]	s1	0,5	2750	150 × 250	1Ф13+2Ф10	2Φ10	2Φ10	2Φ10	Ф6
[23]	s2	0,5	2750	151 × 250	3Ф10	2Φ10	2Φ10	2Φ10	Ф6
	s3	0,5	2750	152 × 250	3Ф13	2Ф10	2Ф13	2Φ10+1Φ13	Ф6
	s4	0,5	2750	153 × 250	3Ф13	2Ф13	2Ф13	2Φ13	Ф6
Tay 1	s5	0,5	2750	154 × 250	3Ф13	3Ф13	2Ф13	3Ф13	Ф6
[24]	s6	0,5	2750	155 × 250	3Ф16	2Ф13	2Φ16	2Φ13	Ф6
	s7	0,5	2150	156 × 250	3Ф13	2Ф13	2Ф13	2Φ13	Ф6
	s8	0,5	1550	157 ×250	3Ф13	2Ф13	2Ф13	2Φ13	Ф6
[ar]	5G	0,37	1562	150 × 185	2Φ10	2Φ10	2Φ10	2Φ10	Ф6
[25]	5S	0,37	1562	150 × 225	5Φ10	2Φ10	2Φ10	3Ф10	Ф6
	A1	0,333	1225	150 × 300	2Φ12	2Ф12	2Φ12	2Φ12	Ф8
	A2	0,333	1225	150 × 301	3Ф12	3Ф12	3Ф12	3Ф12	Ф8
[ac]	AЗ	0,333	1225	150 × 302	3Ф14	3Ф14	3Ф14	3Ф14	Ф8
[26]	A4	0,333	1225	150 × 303	2Φ12	1Φ14	2Φ12	1Φ14	Ф8
	A5	0,333	1225	150 × 304	3Ф12	2Φ12	3Ф12	2Φ12	Ф8
	A6	0,333	1225	150 × 305	3Ф14	2Φ14	3Ф14	2Φ14	Ф8
[27]	р1	0,25	1900	100 × 180	4Φ10	4Φ10	4Φ10	4Φ10	Ф6
[27]	р2	0,25	1300	80 × 140	4Φ10	4Φ10	4Φ10	4Φ10	Ф6

ispitivao postupno urušavanje osmerokatnice primjenom nelinearne metode konačnih elemenata i GSA analize. Hao i dr. [20] i Shi i dr. [21] također su razmatrali opterećenja pri udaru u svojim analizama te je predložena nova metoda za analizu postupnog urušavanja u armiranobetonskim okvirnim konstrukcijama. Zbog troškova eksperimentalnih ispitivanja, metoda konačnih elemenata (eng. finite element - FE) može biti dobra alternativa za proračun građevina u postupnom urušavanju. No, još uvijek nema odgovarajuće procjene prikladnosti FE metode za analizu postupnog urušavanja armiranobetonskih građevina. Stoga se, s obzirom na nedostatak sveobuhvatnih smjernica, u ovom radu obrađuje prikladnost metode konačnih elemenata za analizu postupnog urušavanja armiranobetonskih okvirnih konstrukcija i određuju ograničenja te metode ispitivanjem njenih nedostataka. U tu je svrhu korišteno i analizirano dvadeset prethodno testiranih [22-27] ab elemenata u pet različitih mjerila. Svaki od ovih ab elemenata uključuje dvije grede, jedan srednji spoj i dva rubna stupa. Sve analize su obavljene pomoću programskog paketa ABAQUS 6.13 [28].

2. Detalji uzoraka

Detalji geometrije, poprečne i uzdužne armature za dvadeset uzoraka predstavljeni su u tablici 1. Osim toga, tablice 2. i 3. prikazuju svojstva armature i betona u uzorcima. Više pojedinosti o tome u literaturi [22-27].

3. Numerički model

Kao što je navedeno, metoda konačnih elemenata (MKE) primijenjena je kako bi se analiziralo i procijenilo ponašanje ab uzoraka u slučaju uklanjanja stupa. Sve analize su izvedene u programskom paketu *ABAQUS*-a 6.13 [28]. Općenito, za analizu postupnog urušavanja AB elemenata zasnovanu na metodi konačnih elemenata treba razmotriti sljedeće korake:

- modeliranje betona
- modeliranje armature
- međudjelovanje betona i armature
- svojstva konačnog elementa koji se koristi
- detalji mreže konačnih elemenata
- rubni uvjeti.

Navod literature	Uzorak	Mjerilo	Armatura	Promjer [mm]	Granica popuštanja [MPa]	Granična čvrstoća [MPa]	Maksimalna deformacija [%]
			Φ 12	12	524	700	15
[22]	IMF SMF	1	Φ 25	25	476	648	21
			Φ 29	29	462	641	18
			Φ6	6	349	459	-
[22.24]	S1, S2, S3 S4, S5, S6 S7,S8	0.5	Φ 10	10	511	622	11
[23, 24]		0,5	Φ 13	13	494	593	10,92
			Φ 16	16	513	612	13,43
[ar]	5G	0.27	Φ6	6	363	423	17
[25]	5S	0,37	Φ 10	9.53	493	611	11
			Φ8	8	290	455	33
[26]	A1, A2, A3 A4, A5, A6	0,33	Φ 12	12	350	540	26
	,,		Φ 14	14	340	535	27
			Φ6	6	355	465	17,5
[27]	P1 P2	0,25	Φ 10	10	437	568	13,1
	. 2		Φ 13	13	535	611	11,6

Tablica 2. Svojstva armature

Tablica 3. Svojstva betona

Literatura	[2	2]		[23, 24]						[2	5]	[26]					[2	7]		
Mjerilo		1		0,5 0,37 0,333							0,25									
Uzorak	IMF	SMF	S1	S2	53	S 4	S5	S6	S 7	S 8	5G	55	A1	A2	AЗ	Α4	A5	A6	P1	P2
Tlačna čvrstoća [MPa]	31	36	31,2	31,2	38,2	38,2	38,2	38,2	38,2	38,2	17	17	32,3	35,3	39	29	33,1	35,8	19,9	20,8

3.1. Modeliranje betona

Zbog različitog ponašanja betona u tlaku i vlaku, precizno modeliranje betona uvijek predstavlja izazov. U ovom istraživanju je korišten model oštećenja betona u plastičnom području (eng. concrete damaged plasticity model ili CDPM) kojeg su prethodno predstavili Lubniner i dr. [29], a razvio ga je Lee [30]. CDPM pretpostavlja dva glavna mehanizma Ioma betona, a to su vlačno pucanje i tlačno drobljenje. Jednoosno vlačno i tlačno ponašanje su okarakterizirani oštećenjem u plastičnom području. Kako bi se simuliralo vlačno ponašanje armiranog betona u ABAQUS-u, primijenjen je poslijekritični odnos naprezanja i deformacije. Slika 1.a pokazuje odnos vlačnog naprezanja i deformacije za beton. Za razvoj ovog modela potrebno je odrediti Youngov modul (E_o), vlačno naprezanje (σ_{i}), vrijednost deformacije pri otvaranju pukotina($\varepsilon_t^{\sim ck}$) i vrijednost parametra oštećenja (*d*) betona. Za prikaz odnosa tlačnog naprezanja i deformacije betona određuju se tlačno naprezanje (σ_c), plastična deformacija ($\varepsilon_c^{\sim in}$) koja odgovara vrijednosti naprezanja i svojstvo oštećenja (d) s neelastičnom deformacijom. Reprezentativni odnos tlačnog naprezanja i deformacije sa svojstvima oštećenja i oznakama prikazan je slikom 1.b. Dodatno, CDPM koristi

Slika 1. Odnos naprezanja i deformacija: a) vlak (gore); b) tlak (dolje)

Willam-Warnkeov kriterij sloma za razmatranje učinaka sloma i Hillerborgovu energiju razvoja pukotina za nastanak pukotina. Više pojedinosti se može pronaći u literaturi [28]. Za CDPM su uzete u obzir vrijednosti kuta dilatacije od 40, ekscentricitet od 0,1; fb0/fc0 od 1,16; k = 0,666 i parametar viskoznosti od 0,001.

3.2. Modeliranje čelične armature

Budući da se čelična armatura u armiranobetonskim elementima koristi u obliku šipki, potrebno je modelirati samo jednoosno ponašanje. Za simulaciju loma obavezno je promatrati elastično-plastično ponašanje. U ovom modelu ponašanje čelika je potpuno elastično prije granice tečenja, a nakon toga je plastično i nelinearno sve do loma. Za definiranje plastičnog područja primjenjuje se Von-Misesov kriterij popuštanja [28].

3.3. Međudjelovanje betona i čelika

Za modeliranje djelovanja betona i armature, u ovom istraživanju upotrijebljen je model krute veze između čvorova konačnih elemenata armature i betona. Ta je metoda korisna za statičku i dinamičku analizu te je primjenjiva i u linearnim i u nelinearnim analizama postupnog urušavanja. Ovo međudjelovanje je potpuno međudjelovanje bez klizanja te se temelji na sljedećim pretpostavkama [28]:

- 1. konačni elementi armature nemaju nezavisan stupanj;
- stupnjevi slobode za elemente armature u potpunosti su određeni pomacima čvorova betonskih elemenata.

Ako se čvor čeličnog elementa nađe unutar betonskog elementa, njegovi sestupnjevi slobodnog kretanja uklanjaju i čvor postaje određen pomacima okolnih čvorova betonskih elemenata. Prema tome se stupnjevi slobode unutarnjeg čvora računaju prema stupnjevima slobode okolnih čvorova betonskih elemenata [28].

3.4. Svojstva konačnog elementa

Za modeliranje betona koristi se element *C3D8R*, definiran kao volumni element s osam čvorova [28]. Postoje dvije metode za modeliranje čeličnih šipki. Prema prvoj metodi, šipke se modeliraju kao pojedinačni elementi, a prema drugoj metodi, umjesto primjene pojedinačnih elemenata, učinak armaturnih šipki razmatra se na osnovi krutosti betonskih elemenata. Istraživanja pokazuju da prva metoda daje bolje rezultate pri proračunu metom konačnih elemenata armiranobetonskih elemenata. Zato se za modeliranje šipke koristi T3D2 element, koji je 3D štapni element s dva čvora. Budući da uzdužna sila ima temeljnu ulogu kod čeličnih šipki, ovaj linearni model se koristi umjesto elementa s više čvorova (umjesto konačnog elementa greda). To smanjuje potrebno vrijeme proračuna na računalu.

3.5. Detalji mreže

Općenito, nekonzistentni rezultati se neće pojaviti pri maloj promjeni u veličini mreže. Osim toga, potreba za odabirom vrlo guste mreže ovisi o ciljevima analize, geometrijskim dimenzijama uzoraka i duljini proračuna. S druge strane, istraživanja osjetljivosti mreže u statičkoj analizi upućuju na zaključak da su rezultati za vlačno i tlačno naprezanje u betonu točni ako je veličina mreže između 20 i 76 mm [22, 31]. Navedena gustoća mreže volumnih konačnih elemenata smatra se zadovoljavajućom opisivanje globalnog ponašanja za ispitivanih uzoraka. Dodatno progušćenje mreže bilo bi potrebno samo radi detekcije širenja pukotina u betonu, što je, međutim, izvan opsega ovog rada. Veličina mreže svakog uzorka odabrana je pomoću dvije strategije. Prvo, istraživaniima provedenim prema metodi konačnih elemenata s primjenom na uzorke od armiranog betona određen je prikladan raspon veličine mreže [22, 32, 33]. Drugo, gustoća mreže odabrana je testiranjem nekoliko modela i uspoređivanjem rezultata s eksperimentalnim rezultatima. Stoga je veličina mreže za volumne konačne elemente u uzorcima S1 do S8. IMF i SMF izabrana u dvije veličine - 35 i 55 mm. Također je izabrana mreža veličine

Tablica 4. Mreža konačnih elemenata i detalji opterećenja

28 i 45 mm za uzorke A1 do A6, 25 i 50 mm za uzorke P1 i P2 te 30 i 50 mm za uzorke 5G i 5S. Dodatno progušćenje mreže (20, 28 i 35 mm) kod volumnih elemenata upotrijebljeno je u kritičnim područjima, u priključku i na gredi do udaljenosti od jedne visine grede od lica priključka grede i stupa. U svim drugim područjima upotrijebljene su rjeđe mreže. Veličina mreže štapnih konačnih elemenata koji predstavljaju uzdužne šipke u gredi bila je 100 mm, a za elemente vilica bila je u rasponu od 80 mm do 125 mm. Mreža konačnih elemenata betonskih elemenata je formirana na temelju heksagonalnih volumnih elemenata. Tablica 4. pokazuje veličinu mreže konačnih elemenata kod uzoraka.

3.6. Rubni uvjeti i opterećenje

Model konačnog elementa uvelike ovisi o brzini opterećenja, dakle rezultati su daleko od stvarnosti u statičkoj analizi kada brzina opterećenja nije u statičkom rasponu. Zato je u modelu konačnih elemenata statičko opterećenje primijenjeno na srednji spoj kontrolirajući pomak čvora. Brzina opterećenja u uzorcima IMF i SMF iznosila je 0,416 mm/s, u uzorcima S1 do S8 0,1 mm/s, a u uzorcima A1 do A6 bila je 0,083 mm/s. Budući da brzina opterećenja u uzorcima 5G, 5S, P1 i P2 nije spomenuta u izvješću eksperimenta, za te uzorke je korištena brzina od 0,1 mm/s za simulaciju uvjeta statičkog opterećenja. Nadalje, rubni uvjeti za svakog od ovih uzoraka modelirani su prema njihovim eksperimentalnim uvjetima. Za bolju simulaciju eksperimentalnih uvjeta u FE modelu korištene su šipke sa stvarnim promjerima, kukom i međusobnim spojem.

4. Rezultati

Nakon analize uzoraka metodom kontroliranog pomaka pri opterećenju (control-displacement loading), rezultati MKE su uspoređeni s eksperimentalnim rezultatima. Ispitana su različita mjerila kako bi se pronašli učinci mjerila na rezultate. Krivulja sila-pomak srednjeg spoja kao i razvoj naprezanja u betonu i armaturi prikazani su za sva mjerila, slika 2. Slijedi opis rasprave o mogućnosti modela temeljenog na metodi konačnih elemenata ispitivanjem postotka pogreške u rezultatima MKE. Gradevinar 12/2016

Slika 2. Primijenjeno vertikalno opterećenje i pripadni vertikalni pomak srednjeg stupa za IMF i SMF uzorke u mjerilu 1/1

4.1. Rezultati za IMF i SMF uzorke (mjerilo 1/1)

Slika 2. prikazuje vertikalno opterećenje i pripadni vertikalni pomak srednjeg spoja za IMF i SMF uzorke u stvarnom mjerilu (1/1). Ponašanje krivulje kod uzorka SMF se dobro podudara s eksperimentalnim rezultatima u kojima su prikazana lučna tlačna i vlačna djelovanja. S druge strane, uzorak krivulje kod uzorka IMF je sličan eksperimentalnim rezultatima, ali je razina sile u rezultatu MKE veća nego u eksperimentalnom rezultatu. Rotacija u srednjem spoju za vrijeme opterećenja u eksperimentu uzrokovala je smanjenje nosivosti okvira, što je utjecalo da rezultati MKE budu veći od eksperimentalnih rezultata. Kriterij loma za IMF i SMF uzorke je pucanje donjih šipki armature u srednjem spoju. Stoga je, prikazano na slici 2., iznenadno smanjenje sile na kraju krivulja posljedica loma rebraste armature u srednjem spoju, pri čemu su se uzorci urušili.

Slika 3. Tlačno lučno djelovanje kod uzorka IMF: a) Početak lučnog djelovanja; b) Umanjenje lučnog djelovanja s uvećanjem opterećenja; c) Kraj lučnog djelovanja

Slika 4. Uzdužno naprezanje u armaturi za uzorak IMF (mjerilo 1/1)

Kao grafički rezultati za uzorke u mjerilu 1/1, naprezanja u betonu su prikazana na slici 3., a naprezanje u šipkama na slici 4. za uzorak IMF. Budući da su grafički rezultati za uzorak SMF slični uzorku IMF, njegovo objašnjenje nije prikazano. Slika 3. prikazuje lučno djelovanje u betonu za vrijeme opterećenja za uzorak IMF. Iz slike 3.a je jasno da se otkazivanje betona na početku opterećenja dogodilo u napregnutim područjima te se u uzorku razvio tlačni luk. Dalje se, na slikama 3.b i 3.c, može vidjeti kako taj tlačni luk nije izražen zbog povećanja progiba. Na slici 4. prikazan je razvoj naprezanja u armaturnim šipkama za uzorak IMF.

4.2. Rezultati za uzorke S1 do S8 (mjerilo 1/2)

Slika 5. prikazuje vertikalno opterećenje i pripadni vertikalni pomak srednjeg spoja kod uzoraka S1 do S8 u mjerilu 1/2. Kriterij loma i urušavanja za te uzorke je lom rebraste armature na spoju grede i stupa u kutu. Prvi iznenadni pad u krivulji sila-pomak posljedica je loma rebraste armature u srednjem spoju. Pri povećanju progiba u srednjem spoju, šipke u kutnom spoju su pukle i dogodilo se otkazivanje uzoraka. Kvalitativna usporedba FE rezultata s eksperimentalnim rezultatima upućuju na zaključak da je velika sličnost u krivulji sila-pomak za srednji spoj. Iako je velika razlika između FE i eksperimentalnih rezultata za vrijeme loma šipke, postoji relativno pravilan slijed između rezultata. Lom rebraste armature ovisi o brzini opterećenja, gustoći mreže konačnih elemenata i tipu analize. Stoga se značajna razlika u lomu rebraste armature pojavljuje pri djelomičnoj promjeni svakog od spomenutih parametara. Nadalje, budući da je međudjelovanje betona i

rebraste armature u potpunosti bez proklizavanja, vrijeme loma rebraste armature u FE modelu se može razlikovati od stvarnih testova. S druge strane, eksperimentalne pogreške i nehomogeni sastav betona u ispitivanju, kao i rotacija srednjeg spoja zbog netočnosti u izvedbi rubnih uvjeta, spomenuti su kao čimbenici koji donose promjenu u rezultatima pri lomu šipki. Od osam uzoraka u mjerilu 1/2, posmični lom se dogodio na uzorku S8 i taj tip loma je također prikazan u FE rezultatu. Kao što je vidljivo iz slike 5., uzorak S8 ima konstantnu poslijekritičnu nosivost uslijed kontroliranog povećanja pomaka. Zbog sličnosti, rezultati tlačnog lučnog djelovanja kod uzoraka u mjerilu 1/2 su pokazani pokraj rezultata uzorka S1 na slici 6.

Slika 6. Tlačno lučno djelovanje kod uzorka S1: a) početak lučnog djelovanja, b) umanjenje lučnog djelovanja s uvećanjem opterećenja, c) kraj lučnog djelovanja

Razvoj tlačnog lučnog djelovanja, postupno umanjenje tlačnog lučnog djelovanja i kraj tlačnog lučnog djelovanja prikazani su na slici 6. Osim toga, uzdužno naprezanje šipki i lom rebraste armature u srednjem spoju kod uzorka S1 prikazani su na slici 7.

Slika 7. Uzdužno naprezanje u armaturi uzorka S1 (mjerilo 1/2)

4.3. Rezultati za uzorke 5G i 5S (mjerilo 3/8)

Slika 8. pokazuje vertikalno opterećenje i pripadni vertikalni pomak srednjeg spoja kod uzoraka 5G i 5S u mjerilu 3/8. Usporedba rezultata MKE s eksperimentalnim rezultatima, u području tlačnog lučnog djelovanja, pokazuje da vrijednosti pomaka imaju veliku pogrešku unatoč sličnosti u vrijednostima sila. Dodatno, nagib krivulje na početku analize eksperimentalnog rezultata manji je od nagiba rezultata MKE. Nagib na početku krivulje sila-pomak ovisi o elastičnom ponašanju betona i rebraste armature, modulima elastičnosti, gustoći mreže, brzini opterećenja i maksimalnom kapacitetu čvrstoće betona. Razlika se pojavljuje zbog brzine opterećenja, koja nije spomenuta u izvješću eksperimenta, te zbog nehomogenosti betona koja se pojavila u eksperimentalnom uzorku. Zatim, vlačno lučno djelovanje nije se dogodilo kod uzorka 5S u eksperimentu. Zbog niske čvrstoće betona u eksperimentalnom uzorku spojevi nisu bili sposobni zadržati šipke. Zato su šipke pukle nakon što su zdrobile beton u spoju i to je rezultiralo otkazivanjem uzorka. To se u analizi prema metodi konačnih elemenata nije dogodilo zbog kompaktnog međudjelovanja betona i rebraste armature u uzorku 5S, što je navedeno kao jedno od ograničenja numeričkog modela. Slika 9 pokazuje tlačno lučno djelovanje u betonu uzorka 5G. Budući je obrazac razvoja naprezanja u uzorku 55 sličan ovom uzorku, grafički rezultat za uzorak 55 nije pokazan. Otkazivanje se u ovom tlačnom luku dogodilo povećanjem progiba u srednjem spoju. Nadalje, ovaj tlačni luk je nakon nekog vremena nestao, te je cijeli uzorak postao vlačno napregnut. Slika 10. također prikazuje uzdužno naprezanje u šipkama za uzorak 5G.

Slika 9. Tlačno lučno djelovanje u uzorku 5G: a) Početak lučnog djelovanja; b) Umanjenje lučnog djelovanja s uvećanjem opterećenja; c) Kraj lučnog djelovanja

Slika 10. Uzdužno naprezanje u armaturi uzorka 5G (mjerilo 3/8)

4.4. Rezultati za uzorke A1 do A6 (mjerilo 1/3)

Slika 11. predstavlja vertikalno opterećenje i pripadni vertikalni pomak srednjeg spoja za uzorke A1 do A6 u mjerilu 1/3. lako je eksperimentalno ispitivanje tih uzoraka obavljeno upravo u području tlačnog lučnog djelovanja, numerička analiza je provedena do pucanja rebraste armature u kutnom spoju zbog vlačnog djelovanja. U rasponu tlačnog lučnog djelovanja, eksperimentalni i

Slika 8. Primijenjeno vertikalno opterećenje nasuprot vertikalnom pomaku srednjeg stupa za uzorke 5G i 5S u mjerilu 3/8.

Gradevinar 12/2016

Slika 11. Primijenjeno okomito opterećenje i pripadni vertikalni pomak srednjeg stupa za uzorke A1 do A6 u mjerilu 1/3

rezultati numeričkog modela imaju dobro međusobno preklapanje iz kvalitativne perspektive. U eksperimentalnom testu pucanje šipke dogodilo se upravo u srednjem spoju zbog kratkog vremena analize. Međutim, u numeričkoj analizi prvo i drugo otkazivanje šipke dogodilo se u srednjem i kutnom spoju.

Slika 12. Tlačno, lučno djelovanje u uzorku A1: a) Početak lučnog djelovanja, b) Umanjenje lučnog djelovanja s uvećanjem opterećenja, c) Kraj lučnog djelovanja

Slika 12. pokazuje formaciju tlačnog lučnog djelovanja, njegovo postupno smanjenje i otkazivanje tlačnog luka kod uzorka A1. Unatoč malom rasponu tih uzoraka, tlačno lučno djelovanje može se također dobiti u ovom mjerilu. Nadalje, budući da je visina greda tih uzoraka veća od visine greda ostalih uzoraka u drugim mjerilima, tlačno lučno područje se u ovim uzorcima više proširilo. Slika 13. također pokazuje uzdužno naprezanje šipki uzorka A1.

Slika 13. Uzdužno naprezanje u armaturi uzorka A1 (mjerilo 1/3)

4.5. Rezultati uzoraka P1 i P2 (mjerilo 1/4)

Slika 14. pokazuje rezultate vertikalnog opterećenja i pripadnog vertikalnog pomaka srednjeg spoja za uzorke P1 i P2 u mjerilu 1/4. Općenito ponašanje krivulja u eksperimentima ima prihvatljivu sličnost s ponašanjem krivulja prema metodi

Slika 14. Primijenjeno vertikalno opterećenje i pripadni vertikalni pomak srednjeg stupa za uzorke P1 i P2 u mjerilu 1/4

Slika 15. Tlačno lučno djelovanje u uzorku P1: a) Početak lučnog djelovanja, b) Umanjenje lučnog djelovanja s uvećanjem opterećenja, c) Kraj lučnog djelovanja

konačnih elemenata. Iako se lom rebraste armature za vrijeme analize numeričkog modela nije dogodio, postoji dobro preklapanje rezultata između tlačnog i vlačnog lučnog djelovanja i prijelaznog područja u MKE i eksperimentalnim rezultatima. Brzina opterećenja, spomenuta u izvješću eksperimenta te je definirana kao 0,1 mm/s, može biti razlog za izostanak loma rebrastih armatura za vrijeme opterećivanja. Slika 15. prikazuje razvoj tlačnog lučnog djelovanja u uzorku P1 pri mjerilu 1/4. Tlačni luk je nestao u betonu tijekom povećanja opterećenja dok cijeli uzorak nije postao vlačno napregnut. Uzdužno naprezanje u šipkama uzorka P1 prikazano je na slici 16.

5. Osvrt na rezultate

U svim uzorcima AB elemenata u pet različitih mjerila razina se opterećenja na srednjem spoju smanjila nakon što je dosegnuta maksimalna nosivost i prošlo područje tlačnog lučnog djelovanja. Na kraju i nakon lučnog djelovanja, uslijed povećanja progiba srednjeg spoja, nosivost uzoraka se povećava zbog vlačnog djelovanja u armaturnim šipkama. U ovoj se fazi razvilo vlačno djelovanje, a nakon toga je uzorak otkazao. Iako su krivulje pomaka pod opterećenjem za FE i eksperimentalne rezultate u dobrom, kvalitativnom preklapanju, ističe se nekoliko razlika u rezultatima numeričkih proračuna i eksperimentalnim rezultatima. Zapravo, zbog postojećih eksperimentalnih pogrešaka i uzimajući u obzir činjenicu da beton u eksperimentalnim uvjetima nije homogen, primijenjena sila u numeričkoj analizi razlikuje se od eksperimentalne analize. Dodatno, budući da je beton

Slika 16. Uzdužno naprezanje u armaturi uzorka P1 (mjerilo 1/4)

modeliran homogeno te se djelovanje između betona i čelika za vrijeme opterećenja smatra kompaktnim međudjelovanjem u numeričkom modelu, nosivost armiranobetonskih okvira ima nekoliko razlika u odnosu na eksperimentalne rezultate. Puknuće šipke u eksperimentalnim uvjetima ovisi o homogenosti betona u uzorku, međudjelovanju betona i čelika, brzini opterećivanja, čvrstoći čelika i betona. Svi spomenuti čimbenici nužni su u analizi MKE. Međutim, veličina mreže i tip konačnog elementa u numeričkom modelu također su dva dodatna čimbenika koje treba razmotriti. Način integracije naprezanja unutar elementa u numeričkoj analizi smatra se efektivnim parametrom za točnost rezultata, a koji se kontrolira tipom proračuna te čak i parametrom gustoće mreže. Predloženi numerički model ima sposobnost da prikaže lom rebraste armature. Slika 17. pokazuje puknuće rebraste armature u srednjem spoju uzorka S6 pri mjerilu 1/2. Slika 17.a pokazuje da je vlačno naprezanje doseglo kritičnu točku prije loma u donjim šipkama, a slika 17.b da se prekid dogodio na dvije strane spoja uslijed povećanja progiba. Za usporedbu, slika 17.c pokazuje lom rebraste armature u uzorku S6 u eksperimentu. Dakle, lom šipki se može precizno modelirati sa stvarnom dimenzijom rebraste armature.

Pregled rezultata uzdužnih naprezanja u svim uzorcima pri raznim mjerilima upućuje na zaključak da se tlačno lučno djelovanje formira na početku proračuna u svim uzorcima te da to djelovanje postupno nestaje. Stoga se lučno djelovanje može dobiti korištenjem predloženog numeričkog modela bez obzira na količinu mjerila u svim uzorcima. Zbog nedostatka opsežnih eksperimentalnih podataka, rasprava o učinku mjerila u analizi i rezultatima je složena te traži daljnja istraživanja. Ipak, usporedba eksperimentalnih i podataka, numeričkih modela u pet mjerila pokazuje da nema uzajamnog odnosa između njihovih rezultata. Kao što je rečeno, točnost u rezultatima se može postići pravilnim modeliranjem geometrije, rubnih uvjeta, svojstava materijala, veličine mreže i tipa elementa. Nadalje, izbor mjerila mora se temeljiti na principima sličnosti mjerila. Tablica 5. prikazuje rezultate numeričkog modela i eksperimentalne rezultate uzoraka.

Podaci se organiziraju u tri dijela lučnog djelovanja, prolazno područje i vlačno djelovanje. Zatim, tip loma uzoraka je specificiran za eksperimentalna ispitivanja i numeričke proračune. Omjer FE i eksperimentalnih rezultata (FE/EXP) služi za procjenu postotka pogreške i usporedbe podataka za svaki uzorak u tri stadija. Izračunane su srednje FE/ Exp vrijednosti za tlačno djelovanje luka od 1,02, prijelazno područje od 1,06 i vlačno područje od 0,95, što pokazuje da

Slika 17. Puknuće rebraste armature u srednjem spoju uzorka S6 (mjerilo 1/2): a) povećanje naprezanja u donjoj armaturi prije puknuća; b) puknuće rebraste armature s povećanim opterećenjem; c) puknuće rebraste armature u eksperimentu

numerički model ima visoku sposobnost procjene nosivosti AB elemenata u postupnom urušavanju. Dalje, srednji FE/ Exp rezultati odgovarajućih pomaka za tlačno lučno djelovanje iznose 0,85; prijelazno područje 0,72 i vlačno područje 0,91, što pokazuje da numerički model ima veću pogrešku u predviđanju pomaka nego u predviđanju sile. Zapravo, u prijelaznom području je prisutna pogreška procjene pomaka od 28 %. S druge strane, budući da prijelazno područje nema veliku važnost u postupnom urušavanju, ta se pogreška može zanemariti zbog visoke razine točnosti modela.

> Slika 18 pokazuje postotak pogreške u tlačnom lučnom dielovaniu između eksperimentalnih i rezultata numeričkih modela za uzorke. Maksimalna pogreška je 17 %, što se odnosi na uzorak S5. Dalje, srednja pogreška za procjenu djelovanja tlačnog luka za dvadeset uzoraka jest 6 %. Ne postoji siguran obrazac veze između pogreške i uvećanja mjerila. Stoga, kao što je rečeno, rezultati ovise o detaljima modeliranja, a mjerilo nema utjecaja. Slika 19. prikazuje postotak pogreške u maksimalnom područiu vlačnog djelovanja između eksperimentalnih rezultata i rezultata numeričkog modela za uzorke. Zbog nedostatka rezultata kod vlačnog lučnog djelovanja u eksperimentalnim testovima za uzorke A1 do A6, pogreška je postavljena za ostale uzorke. Maksimalna pogreška u procjeni vlačnog lučnog djelovanja je 18 %, što se odnosi na uzorak S3. Zatim, srednja pogreška za rezultate maksimalnog vlačnog lučnog djelovanja je 7 %.

Tablica 5	Rezultati	numeričkog	modela	(FF)	11 115	noredhi	s oks	nerimentom	(Eyn	١
Tablica J.	Rezultati	numenckug	inoueia ((「」)	u us	poreubi	2 CU2	permentom	(LAP.	•

Navod literature	Mjerilo	Uzorak	Dogultat	Tlačno lučno djelovanje		Prijelazno područje		Vlačn djelo	o lučno ovanje		
			Rezultat	Y [mm]	P [kN]	Y [mm]	P [kN]	Y [mm]	P [kN]	Nacin sioma	
			FE	162	338	344,2	266,8	1070	574	puknuće rebraste armature srednjeg spoja	
		IMF	EXP.	127	296	352,8	196,9	1094	535	puknuće rebraste armature srednjeg spoja	
[22]	1/1		FE/EXP.	1,28	1,14	0,98	1,36	0,98	1,07		
	1/ 1	1/1 SMF	FE	95	841	224,5	676,4	1188	1188	puknuće rebraste armature srednjeg spoja	
			EXP.	107	882	510,5	648,4	1219	1232	puknuće rebraste armature srednjeg spoja	
			FE/EXP.	0,89	0,95	0,44	1,04	0,97	0,96		

Tablica 5. Rezultati numeričkog modela (FE) u usporedbi s eksperimentom (Exp.) - nastavak

			FE	57	45	210.4	24.2	594	75	napuknuće rebraste armature kutnog spoja
		51	FXP	78	416	246.1	14.9	573	68.91	papuknuće rebraste armature kutnog spoja
		51	EF/EVD	0.73	1.08	0.85	1.62	1.0/	1.00	
[23]			EE	71	1,00	100 /.	72 5	502	1,05	papulou da rebracto armatura kutpog opoja
		57	EVD	71	20 /	752.2	20,0	612	67.6	
		52		/5	30,4	252,5	1 22	0.07	1.07	המשטאות ביפטומגני מווומנעופ גענווטס גיסטמ
			FE/EXP.	0,97	1,04	0,75	1,22	0,97	1,07	
		63	FE	57	56	80,1	24,4	590	101,9	napuknuce rebraste armature kutnog spoja
		53	EXP.	/4,4	54,5	189,2	24,3	/29,3	124,3	napuknuce rebraste armature kutnog spoja
			FE/EXP.	0,77	1,03	0,42	1,00	0,81	0,82	
			FE	77	62	152,7	40,4	599	109	napuknuće rebraste armature kutnog spoja
		S4	EXP.	81	63,2	167,1	47,8	614	103,7	napuknuće rebraste armature kutnog spoja
	1/2		FE/EXP.	0,95	0,98	0,91	0,85	0,98	1,05	
			FE	75	58	112,4	45,7	598	96	napuknuće rebraste armature kutnog spoja
		S5	EXP.	74,5	70,3	205,4	51,6	666	105,1	napuknuće rebraste armature kutnog spoja
[24]			FE/EXP.	1,01	0,83	0,55	0,89	0,90	0,91	
[24]			FE	90	71	178,4	52,7	692	142	napuknuće rebraste armature kutnog spoja
		56	EXP.	114,4	70,3	181,2	63	580	143	napuknuće rebraste armature kutnog spoja
			FE/EXP.	0,79	1,01	0,98	0,84	1,19	0,99	
			FE	55	75	76,5	53,1	600	110	napuknuće rebraste armature kutnog spoja
		S7	EXP.	74,4	82,8	176,4	58,7	628	106	napuknuće rebraste armature kutnog spoja
			FE/EXP.	0,74	0,91	0,43	0,90	0,96	1,04	
			FE	28	126	135.6	83.2	216	100.2	napuknuće rebraste armature kutnog spoja
		58	EXP.	45.9	121	111.8	75.2	225	91.9	posmični slom
			FE/FXP	0.61	1 04	1 2 1	1 1 1	0.96	1.09	F
			FF	25	21	122.7	18.2	367	21.4	napuknuće rebraste armature kutnog spoja
		56	FXP	81.4	20.5	2279	16.9	353.7	19.9	napuknuće rebraste armature kutnog spoja
		50		0.21	1.02	0.5%	1 00	1.0/	1 00	
[25]	3/8		EE	116 1	7,02	0,54	2/.	200 6	75 1	papulkaućo robracto armaturo kutaog opoja
		FC		F0	50	262,5	24	299,0	1,00	
		22		2.22	37	205,0	52,1	-	-	sioni betona u kutilom spoju
			FE/EXP.	2,32	1,03	0,32	1,06	-	-	
			FE	25	172	227	97,4	569	198	napuknuce rebraste armature kutnog spoja
		A1	EXP.	42	165	-	-	-	-	napuknuce rebraste armature kutnog spoja
			FE/EXP.	0,60	1,04	-	-	-	-	
			FE	31	233	168	139	567	280	napuknuće rebraste armature kutnog spoja
		A2	EXP.	55	221	-	-	-	-	napuknuće rebraste armature kutnog spoja
			FE/EXP.	0,56	1,05	-	-	-	-	
			FE	50	255	153	175	539	345	napuknuće rebraste armature kutnog spoja
		A3	EXP.	60	246	-	-	-	-	napuknuće rebraste armature kutnog spoja
[26]	1/3		FE/EXP.	0,83	1,04	-	-	-	-	
[20]	1/ 5		FE	35	150	211	85	595	180	napuknuće rebraste armature kutnog spoja
		A4	EXP.	64	146	-	-	-	-	napuknuće rebraste armature srednjeg spoja
			FE/EXP.	0,55	1,03	-	-	-	-	
			FE	60	188	221	105	589	228	napuknuće rebraste armature srednjeg spoja
		A5	EXP.	75	198	-	-	-	-	napuknuće rebraste armature srednjeg spoja
			FE/EXP.	0,80	0,95	-	-	-	-	
			FE	54	236	238	154	571	312	napuknuće rebraste armature srednjeg spoja
		A6	EXP.	65	215	_	_	-	-	napuknuće rebraste armature srednjeg spoja
			FE/EXP.	0,83	1,10	_	_	_	-	

Analiza ab elemenata u scenariju progresivnog urušavanja metodom konačnih elemenata

[27]		P1	FE	27,6	35,4	175,6	20,63	368,2	50,4	napuknuće rebraste armature srednjeg spoja
			EXP.	39	32	191,9	19,1	370	47	napuknuće rebraste armature srednjeg spoja
	1//		FE/EXP.	0,71	1,11	0,92	1,08	1,00	1,07	
	174	P2	FE	29,7	37,4	111,4	27,1	293,6	64,7	napuknuće rebraste armature srednjeg spoja
			EXP.	36,1	36	140,1	29,1	299	59	napuknuće rebraste armature srednjeg spoja
			FE/EXP.	0,82	1,04	0,80	0,93	0,98	1,10	
Srednji FE/ Exp,			0,85	1,02	0,72	1,06	0,91	0,95		

Tablica 5. Rezultati numeričkog modela (FE) u usporedbi s eksperimentom (Exp.) - nastavak

Slika 18. Postotak pogreške između rezultata numeričkog modela i eksperimentalnih rezultata tlačnog lučnog djelovanja

Slika 19. Postotak pogreške između rezultata numeričkog modela i eksperimentalnih rezultata vlačnog lučnog djelovanja

6. Zaključak

Izvorni numerički model konačnih elemenata, predložen u ovom istraživanju, koristan je i potreban način da se predvidi i analizira ponašanje stvarnih građevina izloženih postupnom urušavanju. U ovom su istraživanju ispitani učinkovitost i sposobnost modela konačnih elemenata da predvidi ponašanje armiranobetonskih uzoraka u scenariju uklanjanja stupa. Treba dodati da u ovom istraživanju nisu razmatrani dinamički parametri uključujući učinke brzine deformacije i inercije, a pomaci su se postupno povećavali. Rezultati istraživanja prikazani u ovom radu su sljedeći:

- Kvalitativna usporedba krivulje sila pomak za dvadeset uzoraka u pet različitih mjerila pokazala je dobru usklađenost između eksperimentalnih rezultata i rezultata numeričkog modela. Potvrđuje se preciznost predloženog modela koji se može primijeniti za stvarne armiranobetonske okvirne konstrukcije unutar pretpostavki spomenutih u ovom istraživanju.
- Predloženi model temeljen na metodi konačnih elemenata ima sposobnost procijeniti postupno urušavanje uzoraka u različitim mjerilima. Ne postoji općeniti odnos za učinak veličine mjerila uzorka na rezultate numeričkog modela koji su ostvareni unutar različitih pogrešaka za različita mjerila.
- lako predloženi model ima sposobnost da predvidi puknuće šipki, proklizavanje šipki nije razmatrano zbog krutog

kinematičkog međudjelovanja betona i rebraste armature. Ovaj nedostatak predloženog modela uzrokovao je malu pogrešku u rezultatima.

- Prosjek od FE/Exp. u uzorcima je pokazao da predloženi numerički model ima bolju sposobnost procjene nosivosti nego procjene pomaka. Ustvari, prosjeci FE/Exp. za nosivost pri tlačnom lučnom djelovanju su iznosili 1,02, a u prijelaznom području 1,06 te u području vlačnog lučnog djelovanja 0,95. S druge strane, prosjeci FE/Exp. za odgovarajuće pomake bili su 0,85 za tlačno lučno djelovanje 0,72 za prijelazno područje i 0,91 za vlačno lučno djelovanje. Budući da je procjena nosivosti u postupnom urušavanju važnija od pomaka, pogreška od 28 % za pomake u prijelaznom području može se zanemariti.
- Grafički rezultati za uzorke upućuju na zaključak da predloženi numerički model može predvidjeti tlačno lučno djelovanje betona u bilo kojem mjerilu. Stoga su nastanak i kraj područja tlačnog lučnog djelovanja nezavisni od utjecaja mjerila.

S obzirom na visoku cijenu eksperimentalnih istraživanja, eksperimentalne pogreške i dugotrajan proces ispitivanja, numerički model temeljen na metodi konačnih elemenata predložen u ovom istraživanju može biti optimalno rješenje za procjenu ponašanja armiranobetonskih okvirnih konstrukcija u postupnom urušavanju.

LITERATURA

- Gross, J.L., Mc Guire, W.: Progressive collapse resistant design, J. Struct. Eng., 109 (1983) 1, pp. 1-15, https://doi.org/10.1061/ (ASCE)0733-9445(1983)109:1(1)
- [2] Casciati, F., Faravelli, L.: Progressive failure for seismic reliability analysis, Engineering Structures, 6 (1984) 2, pp. 97-103, https:// doi.org/10.1016/0141-0296(84)90002-6
- [3] Sasani, M., Werner, A., Kazemi, A.: Bar fracture modeling in progressive collapse analysis of reinforced concrete structures, Eng. Struct., 33 (2011) 2, pp. 401-409, https://doi.org/10.1016/j. engstruct.2010.10.023
- [4] Tsai, M., Lin, B.: Investigation of progressive collapse resistance and inelastic response for an earthquake-resistant RC building subjected to column failure, Engineering Structures, 30 (2008) 12, pp. 3619-3628.
- [5] GSA, Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. The US General Services Administration; 2003.
- [6] Ahmadi, R, Rashidian O., Abbasnia, R, Mohajeri Nav, F., Usefi, N.: Experimental and Numerical Evaluation of Progressive Collapse Behavior in Scaled RC Beam-Column Subassemblage, Shock and Vibration, vol. 2016, Article ID 3748435, 17 pages, 2016, https:// doi.org/10.1155/2016/3748435
- [7] Unified Facilities Criteria (UFC)-DoD. Design of buildings to resist progressive collapse. Department of Defense; 2005.
- [8] Grierson, D.E., Xu, L., Liu, Y.: Progressive-failure analysis of buildings subjected to abnormal loading, Computer Aided Civil and Infrastructure Engineering, 20 (2005) 3, pp. 155-171, https://doi. org/10.1111/j.1467-8667.2005.00384.x
- [9] Mohajeri Nav, F., Abbasnia, R., Rashidian, O., Usefi, N.: Theoretical Resistance of RC Frames under the Column Removal Scenario Considering High Strain Rates, J. Perform. Constr. Facil, 2016, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000867
- [10] Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y., Nethercot, D.A.: Progressive collapse of multi-story buildings due to sudden column loss - Part I: Simplified assessment framework, Engineering Structures, 30 (2008), pp. 1308-1318, https://doi. org/10.1016/j.engstruct.2007.07.011
- [11] Powell, G.: Progressive Collapse, Case studies Using Nonlinear Analysis. Structures Congress, pp. 1-14, 2005, https://doi. org/10.1061/40753(171)216
- [12] Vlassis, A.G.: Progressive collapse assessment of tall buildings, Ph.D. thesis. Department of Civil and Environmental Engineering, Imperial College London, 2007.
- [13] Marjanishvili, S., Agnew, E.: Comparison of various procedures for progressive collapse analysis, Journal of Performance of Constructed Facilities, ASCE, 20 (2006) 4, pp. 365-374, https:// doi.org/10.1061/(ASCE)0887-3828(2006)20:4(365)
- [14] Alashker, Y., El-Tawil, S.: Design-oriented model for collapse resistance of composite floors subjected to column loss, J. Constr. Steel Res., 67 (2011) 1, pp. 84-92, https://doi.org/10.1016/j. jcsr.2010.07.008
- [15] Ellingwood, B., Dusenberry, D.O.: Building design for abnormal loads and progressive collapse, Computer-Aided Civil and Infrastructure Engineering, 20 (2005) 3, pp. 194-205, https://doi. org/10.1111/j.1467-8667.2005.00387.x
- [16] Luccioni, B.M., Ambrosini, R.D., Danesi, R.F.: Analysis of building collapse under blast loads, Eng. Struct., 26 (2004) 1, pp. 63-71, https://doi.org/10.1016/j.engstruct.2003.08.011

- [17] Talaat, M.M., Mosalam, K.M.: Computational modeling of progressive collapse in reinforced concrete frame structures, Technical Rep. No. PEER 2007/10, Pacific Earthquake Engineering Research Center, Berkeley, CA., 2008.
- [18] Faridmehr, I., Osman, M.H., Tahir, M.M., Nejad, A.F., Hodjati, R.: Evaluation of extreme load performance of pre-Northridge connections, GRADEVINAR 66 (2014) 10, pp. 889-898, https:// doi.org/10.14256/JCE.991.2013
- Kwasniewski, L.: Nonlinear dynamic simulations of progressive collapse for a multistory building, Engineering Structures, 32 (2010) 5, pp. 1223-1235, https://doi.org/10.1016/j.engstruct.2009.12.048
- [20] Hao, H., Wu, C., Li, Z., Abdullah, A.K.: Numerical analysis of structural progressive collapse to blast loads, Trans Tianjin Univ, 12 (2006), pp. 31-34.
- [21] Shi, Y., Li, Z.X., Hao, H.: A new method for progressive collapse analysis of RC frames under blast loading". Engineering Structures, 32 (2010), pp. 1691-1703, https://doi.org/10.1016/j. engstruct.2010.02.017
- [22] Yihai Lew, B., Sashi, K.: Modeling of Reinforced Concrete Assemblies under Column-Removal Scenario, Journal of Struct, Eng @ASCE, ISSN (13), 2014.
- [23] Yu, J., Tang, K.H.: Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages, Engineering Structures, 55 (2013), pp. 90–106, https://doi.org/10.1016/j.engstruct.2011.08.040
- [24] Jun, Y., Kang, H.: Structural Behavior of RC Beam-Column Sub assemblages under a Middle Column Removal Scenario, J. Struct. Eng., 139 (2013), pp. 233-250, https://doi.org/10.1061/(ASCE) ST.1943-541X.0000658
- [25] Choi, H., Kim, J.: Progressive collapse-resisting capacity of RC beam-column sub-assemblage, Magazine of Concrete Research, 63 (2011) 4, pp. 297-310, https://doi.org/10.1680/macr.9.00170
- [26] Youpo, S., Ying, T., Xiaosheng, S.: Progressive Collapse Resistance of Axially-Restrained Frame Beams, ACI Structural Journal, 106 (2009) 5, pp. 600-607.
- [27] Qian, K., Li, B., Ma, J.: Load-Carrying Mechanism to Resist Progressive Collapse of RC Buildings, J. Struct. Eng., 2014, https:// doi.org/10.1061/(ASCE)ST.1943-541X.0001046
- [28] ABAQUS Version 6.13 Documentation, (2013).
- [29] Lubliner, J., Olive,r J., Oller, S., Onate, E.: Aplastic-damage model for concrete. International journal of Solids and Structure, 25 (1989) 3, pp. 299-326, https://doi.org/10.1016/0020-7683(89)90050-4
- [30] Jeeho, L., Gregory, L.: Plastic damage model for cyclic loading of concrete structures, J. Eng. Mech., 124 (1998), pp. 892-900, https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
- [31] Federal Highway Administration, Evaluation of LS-DYNA concrete material model 159., Publication No. FHWA-HRT-05-063, McLean, VA, (2007).
- [32] Ashraf, M., Mohie, S., Janet, M.: Prediction of the behavior of reinforced concrete deep beams with web openings using the finite element method", Alexandria Engineering Journal, pp. 1110-1168, 2014.
- [33] Aikaterini, S., Genikomsou Maria, A.: Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS, Engineering Structures, 98 (2015), pp. 38-48, https:// doi.org/10.1016/j.engstruct.2015.04.016