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Discrete dome model for St. Jacob cathedral in Šibenik

Principal features of the non-smooth contact dynamics method, which served as basis 
for the LMGC90 software formulation, are presented in the paper. The objective of the 
paper is to present creation of a discrete model using the LMGC90 software. The discrete 
dome model of the St. Jacob cathedral in Šibenik was created, and dynamic behaviour of 
the dome was checked by time-history analysis. The results point to a highly nonlinear 
behaviour of the dome, which would be difficult to detect with the finite element method. 
The results also reveal critical points, i.e. the maximum displacement and contact force 
points along the dome.
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Diskretni model kupole katedrale svetoga Jakova u Šibeniku

U radu su prikazane osnove metode neglatke kontaktne dinamike na temelju koje 
je formuliran programski paket LMGC90. Cilj rada je prezentirati postupak izrade 
diskretnog modela u programu LMGC90. Izrađen je diskretni model kupole katedrale 
sv. Jakova u Šibeniku i na njemu je provedena time-history analiza. Dobiveni rezultati 
upućuju na značajna nelinearna ponašanja kupole koja je teško obuhvatiti metodom 
konačnih elemenata. Rezultati upućuju na kritična mjesta, to jest locirana su područja 
maksimalnih pomaka i kontaktnih sila.
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Diskretes Modell der Kuppel der Kathedrale des Heiligen Jakob in Šibenik

In dieser Arbeit werden die Grundsätze der nicht-glatten Kontaktdynamik, auf die sich 
das Softwarepaket LMGC90 stützt, dargestellt. Das Ziel der Arbeit ist, den Aufbau eines 
diskreten Modells im Programm LMGC90 darzustellen. Ein diskretes Modell der Kuppel der 
Kathedrale des Heiligen Jakob in Šibenik wurde erstellt und mittels Zeitverlaufsanalysen 
untersucht. Die Ergebnisse weisen auf ein bedeutend nichtlineares Verhalten hin, das 
nicht einfach mit finiten Elementen erfasst werden kann. Ebenso deuten die Resultate 
auf kritische Stellen, so dass Bereiche maximaler Verschiebungen und Kontaktkräfte 
lokalisiert werden konnten. 
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1. Introduction

Complex modelling and lack of adequate software are some 
of the reasons behind poor acceptance of discrete models in 
engineering practice. Although the finite element method (FEM) 
is a good mathematical model for describing the continuum, 
the discrete method is the preferred choice in the sphere of 
discontinuous media. The discrete method is based on defining 
geometry of individual elements, i.e. discrete elements and their 
mutual contact relationship. 
In the territory of the Republic of Croatia, there are many 
buildings of exceptional cultural and historic significance that are 
built of stone blocks. Structures made of stone blocks without 
binder, or with poor binder, are considered to be discontinuous 
structural systems. St. James Cathedral in Šibenik is made of 
stone blocks without the use of binder, and it therefore belongs 
to the group of discontinuous systems. This paper focuses on 
the development of numerical model of the dome of St. James 
Cathedral in Šibenik, and on the response of this cathedral to 
seismic action. Numerical model was developed using the 
LMGC90 software, which is based on discrete formulation. 

2. Discrete element method

The finite-element method (FEM) is widely accepted in all 
areas of engineering practice. The main property of the FEM 
is that it considers numerical model as a continuous medium. 
The geometry and behaviour of a continuous medium is 
described using pre-defined finite elements. Although 
behaviour of a great number of problems can be described 
using the FEM, the use must be made of the discrete element 
method (DEM) when a discontinuous or intermittent medium 
is considered. The discrete numerical model is described by a 
set of individual discontinuous media called discrete elements. 
They can be observed as absolutely rigid or deformable areas. 
If deformable discrete elements are considered, then the 
combined method called finite-discrete element method is 
used [1]. The finite-discrete element method is aimed at using 
advantages presented by the FEM and DEM. The interaction 
between individual discrete elements is described using 
contact laws.
Laws regulating contact between discrete elements can be 
defined by means of the smooth and non-smooth contact 
dynamics. The smooth dynamics attempts to describe 
deformable behaviour of discrete elements. Contacts between 
discrete elements are described by means of springs or 
functions. Behaviour at the contact can depend on the size of 
overlap, relative speed and relative force.
Spring-based modelling requires the use of time steps that 
should be smaller than the elastic time response so as to 
ensure numerical stability [2]. Rigid discrete elements require 
an increase in spring rigidity, and a shorter time step, which 
increases the time needed for analysis. Absolutely rigid 
materials require infinitesimal time steps. Smooth contact 

dynamics is used for modelling materials with finite rigidity [2].
In the non-smooth contact dynamics, discrete elements are 
assumed to be absolutely rigid, while elastic behaviour between 
discrete elements is neglected [2]. 

Figure 1. Model of the contact between discrete elements [2] 

Unlike the smooth method, the non-smooth method enables 
the use of a greater time step and can describe "absolutely 
rigid materials". Proper attention must be paid to the selection 
of time step. A large time step may result in excessive 
penetration of discrete elements. An advantage of this 
method is that it converges quite well, which is otherwise a 
big problem in case of models with a large number of elements 
[2]. The non-smooth contact method is implemented in 
the program LMGC90, which is based on an open source 
code. The LMGC90 code is written in Fortran and C, and the 
programming language Python is used for entering the data. 
It should be noted that the program works exclusively with 
the operating system Linux, and supports the OpenMP, which 
enables computing in parallel.

2.1.  Equation of motion of non-deformable discrete 
elements (DE)

Motion of non-deformable discrete elements is described in the 
Newton-Euler system of equations [3].

 (1)

Generalized coordinates q define position of the centre of mass 
of discrete elements with respect to the origin of the Cartesian 
coordinate system. The speed of the centre of mass vT  is defined 
by deriving coordinates q along the time t.

 (2)

The speed of the discrete element’s rotation around the centre 
of the mass is defined by means of w. The values p(t) and m(t) 
describe external resulting force and external resulting moment. 
The matrices M i I define the mass matrix and the inertia matrix. 
The vectors r and mr are the forces and moments that are 
caused by contact between two discrete elements.
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2.2. Interaction of discrete elements

Each discrete element must have defined contours, interaction 
points, material characteristics and the law specifying behaviour 
at the place of contact. The contact of two discrete elements is 
realised between the selected interaction point and the closest 
point of the potential interaction body. The term candidate, 
which relates to the body whose interaction point is observed, 
is introduced to facilitate understanding. The term antagonist, 
representing the potential interaction body, is also introduced.

Figure 2. In-plane relation between candidate and antagonist

Figure 2 shows an in-plane problem of relationship between the 
candidate and antagonist. Points C and A are potential points of 
contact. Local axes are linked to the colliding body, while n  is 
normal to the tangential plane. To facilitate presentation, the 
problem is presented in two-dimensional space, but can simply 
be extended to three dimensions [3, 4]. 

Figure 3. Motion of rigid discrete element

The motion of a rigid discrete element in x-y.plane is presented 
in Figure 3. Two points are defined. The point T represents the 
centre of the mass, while the point S is situated on the contour 
of the discrete element. The speed of the point S is defined by 
the speed of the centre of the mass vT and by angular velocity 
wZ, which is related to the rotation around the axis z. The velocity 
of the point S can be described by the following expression (3):

 (3)

The two-dimensional problem of the velocity of points on 
the contour of discrete elements can be extended to a three-
dimensional problem, and the velocity of a point is then defined 
by the expression (4):

 (4)

where vS is the velocity vector in point S, vT is the velocity vector 
of the centre of mass, while  is the angular velocity vector. The 
matrix L assumes the following form: 

  (5)

It defines the relationship between the angular velocity  
and velocity in point S. In Figure 3, the distance between the 
potential point of contact between two discrete elements 
is defined by the vector g, and the change of vector g in time 
defines relative velocity between discrete elements. From this 
point on, the relative velocity between discrete elements will be 
designated with U. The velocities of potential points of contact 
between the candidateand the antagonistare defined in eq. (4), 
and their difference defines relative velocity as follows 

  (6)

where vC
T and vA

T are the centre-of-mass velocities of the 
candidate and the antagonist, C and A are angular velocities 
of the candidateand the antagonist. Eq. (6) can be re-formulated 
as follows:

  (7)

or

  (8)

where:

 (9)

The matrices LC and LA correspond to the matrix L for potential 
points of contact between the candidate and the antagonist while 
I is the unit matrix measuring 3 x 3. Eq. (8) is the basic equation 
of the NSCD method, and it links relative velocities between the 
potential place of contact of two discrete elements and global 
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velocities of the same potential points of contact. The scalar 
product of Equation 8, with unit vector  that defines 
the local coordinate system, transforms relative velocities in the 
direction of local axes, as shown in Figure 3. The index a denoting 
each potential contact in the system with several discrete 
elements is introduced. After transformation and introduction of 
the index a, the Expression 8 assumes the following form:

 (10)

The following relationship can also be established using Eq. (10):

  (11)

where ra is the contact force in the global system while Ra is the 
contact force in the local system as defined according to contact 
law.  Ha

T is the transposed matrix Ha [3].

Figure 4. Signorini and Coulomb contact laws

Contact laws define relationships between the relative velocity or 
distance g and the contact force. Although there are many contact 
laws, the most frequently used ones are the Signorini and Coulomb 
laws, as shown in Figure 4. The Signorini’s contact law is used to 
determine whether the contact between discrete elements has 
been realised. If the distance g is positive, the contact has not been 
realised, i.e. the normal contact force RN  is equal to zero. When 
the distance g is equal to zero, then the normal contact force RN  is 
activated, and it can assume infinite values [5]. The value of contact 
force RN  depends on the value of forces acting on discrete elements 
[5]. For the model made of absolutely rigid discrete elements, the 
normal contact force RN  is determined by means of impulses, and 
it depends on the relative velocity UN  and on the selected value of 
time step Dt. The Signorini’s law can be mathematically described 
using the following expressions:

 (12)

The Coulomb’s contact law is shown in Figure 4. In case of dry 
friction, the value of friction force or tangential contact force RT 

depends on the friction coefficient m and the normal contact force 
RN. The Coulomb’s mathematical law can be presented as follows:

 (13)

UT is the relative tangential velocity.

Figure 5. Relationship between global and local unknowns

The relationship between global and local unknowns is shown in 
Figure 5. Global unknowns are related to the centre of mass of a 
body or to network points. Global unknowns are displacements 
q velocities , resulting forces and moments r. Local unknowns 
are related to the distance between two bodies g relative 
velocity between two bodies U, and force R.

3.  Discrete model of the dome of St. James 
Cathedral in Šibenik 

The drawings of the St. James Cathedral in Šibenik are kept at the 
Zagreb Institute of History and Art. Tracing-paper drawings on 
the scale of 1/200 and 1/50 are kept in the Institute’s archives; 
digital versions are currently not available. These drawings consist 
of four façades, two longitudinal cross-sections, two transverse 
cross-sections, and the plan view of the structure. Longitudinal 
cross-sections are defined by planes crossing the cathedral along 
symmetry axis, and through the side nave. Cross-section planes cut 
the cathedral through three naves and the central part of the dome. 
The numerical model development does not require a "perfect" 
accuracy, i.e. several cm deviation from the as-built state will 
not significantly alter accuracy of the solution. Drawings on 
the scale of 1/200 are used in the scope of this paper. They are 
considered to be accurate enough for development of a good-
quality numerical model. Visual inspection of the cathedral 
was also made, and it enabled collection of additional data for 
preparation of the model. This visual inspection enabled experts 
to determine regularity of placement of stone blocks, and the 
way in which steel ties are arranged.

3.1. Dome geometry

The dome is of octagonal form, and its sides measure 330 cm 
in length at the base. The height of the dome, measured from 
cornice to acroterion, amounts to 600 cm. The basic load-
bearing system is formed of eight ribs that are linked together 
at the dome crown. The schematic view of the rib disposition 
is shown in Figure 6. The ribs are linked together with a central 
block connecting ribs into a single assembly. The central block 
and the ribs form an arch. The angle between two rib axes 
amounts to 45°. Each rib is made of ten elements. The rib height 
amounts to 55 cm along the entire rib length, while the rib width 
is variable. The rib width amounts to 50 cm at the spring level, 
and 38 cm at the crown [6].
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After analysis of drawings, it was established that the rib shape 
can adequately be described by a parabola.  It is defined by the 
rib axis equation.

   [0,431] (14)

The parabola is defined with two parameters h and r the value 
h defines the dome height, i.e. it represents the length between 
the origin and the crown of the parabola, while r is the radius 
of the octagon defining circle. The values of parameters h and r 
amount to 600,0 cm and 431,0 cm, respectively.

Figure 6. Disposition of rib axes

3.2. Ribs

After inspection of available documents, it was established that 
each rib is composed of ten segments of similar length, and so it 
was assumed that all segments are of equal length. The above 
assumption enables definition of conditions for the length and 
positioning of individual segments. The length and position of 
individual segments is defined by means of h, r, and r1, and by the 
number of segments. The parameter r1 defines the size of the central 
stone, i.e. the rib start coordinate. To define the length of individual 
segments, it is first of all necessary to calculate the total length of 
parabola in the zone from r1 to r. The total length of parabola in the 
zone from r1  to r can be calculated using the following expression:

  (15)

Equation 6 is derived on the basis of the known arch length 
expression. The length of individual segments is defined by dividing 
the arch length with the number of segments. If the segment length 
is inserted instead of the total arch length in Expression 6, then the 
value of r, defining the end of the segment, can be calculated. The 
value of r was determined numerically using the program language 
Python, and the code calculating final coordinates of individual 
rib segments was written. The calculation result is the list of 
coordinates that will be designated below as x1.
The rib cross section is defined with seventeen characteristic 
points. Coordinates of characteristic points are determined 

from the reference point T0 that is defined by the list of 
coordinates x1, and by Expression 5. The remaining sixteen 
cross-section coordinates are defined using the pre-
determined geometrical characteristics of the cross section 
and straight line perpendicular to the tangent of function 5 in 
point T0 .

Figure 7. Approximation of cross-section

Cross-section parameters m, e, a, b and hv change along the 
rib axis and must be calculated separately for each connection 
between two rib segments. To enable achievement of the 
desired cross-sectional shape, the rib segment is made of six 
four-sided prisms that behave as a single discrete element or 
as a rigid non-deformable body. The program defining the rib 
model was written. This program passes through two loops. 
One loop defines segments along the rib axis, and the other loop 
creates a new rib rotated for 45°.

Figure 8. Rib model

3.3. Central stone (keystone)

The function of the keystone is to link ribs into a single whole, i.e. 
to obtain a properly closed structure. The keystone is modelled 
in such a way that it links several standard discrete elements 
into a single whole that behaves as a single absolutely rigid 
discrete element.
A keystone segment defined with eight points and twelve 
triangular zones is presented in Figure 9. A complete keystone 
model (presented in Figure 10) is created by rotation of the 
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segment shown in Figure 9. The rotation axis is situated in 
the origin of the coordinate system, i.e. it corresponds to the 
z axis.

Figure 9. A keystone segment

Figure 10. A keystone model

3.4. Roofing

The dome roofing is made of trapezoidal stone blocks. The 
roofing blocks fill the space between the ribs and lean onto the 
ribs. Ribs have grooves into which roofing elements are inserted. 
At the contact of two roofing elements there is an overlap, the 
top plate passes over the bottom one. Roofing elements are 
curved in keeping with the curvature of the dome, Figure 11. 

Figure 11.  Discrete model of the dome of St. James Cathedral in 
Šibenik

It is very difficult to numerically define such a complex form 
of roofing elements. Therefore, model simplifications were 
introduced. Overlaps at the contact of two neighbouring roofing 
elements were neglected and the curvature was approximated 
with two areas. Individual roofing elements were defined through 
rib geometry. The geometry of one roofing element was defined 
in detail, and the remaining elements were obtained by means 
of a double loop. The first loop defines the elements along the 
rib, and the second one the elements between neighbouring ribs.

4. Dynamic response of the dome

Two dynamic analyses are presented in the paper. The real data 
analysis was conducted according to the accelerogram for El Centro 
[7], which was increased using factors 1.5, 2.0, 2.5, and 3.0 so as to 
define full failure of the dome. The second analysis was conducted 
by means of five artificially generated earthquake records.

Figure 12. Artificially generated earthquake records

Earthquake records were generated using the Seismo Artif 2016 
software [8, 9] The elastic spectrum was defined according 
to EC8 [10] parameters that correspond to the location of St. 
James Cathedral in Šibenik.
The ground acceleration agS amounting to 0,19 g, was taken from 
the Map of earthquake-prone areas in the Republic of Croatia [11] 
for the soil category A and the return period of 475 years. The 
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building/structure significance factor of 1,4 was selected.  The 
assumed distance from the epicentre is 10 km, and the average 
shear wave velocity is vS,30 = 940 m/s. The damping factor of 5% 
was assumed, and the assumed earthquake magnitude amounted 
to Ms = 7,5. Artificial seismic records were generated based on the 
elastic spectrum defined using the Seismo Artif 2016 software. 
The integration and correction, i.e. the baseline correction of the El 
Centro earthquake record and artificially generated records, was 
conducted using the Prisma software [12].
Two action types, force and velocity, were defined using the 
LMGC90 software. The integration and correction was made 
based on the known El Centro accelerations and artificially 
generated earthquake records, in order to obtain ground 
velocities or bases. The excitation was made in the x axis 
direction only, Figure 13.

Figure 13. El Centro earthquake record

The iteration is made using the non-linear Gauss-Seidel 
method (NLGS). The system formed of two equations with two 
unknowns is assumed:

 (16)

It will be used to explain Gauss-Seidel methods. a, b, c, d, l and 
d and are constant values. Eq. (16) can be re-formulated as 
follows:

 (17)

The iteration procedure is conducted by assuming initial values 
of x0  and y0, which are inserted in Eq. (17). The new set of values 
is inserted in Eq. (16) and, if equations exhibit appropriate 
accuracy, the procedure is interrupted or values are re-inserted 
in Eq. (17). This iteration procedure is known as the Jacobi 
method. The Gauss-Seidel method is a modification of the 
Jacobi method: the same iteration pattern is used, except that 

new values are used within the same iteration, i.e. a soon as a 
new value is known - it is used in calculation of the next value. It 
can be seen from Expression 18 that the value of Xn+1 is used in 
the calculation of the value yn+1.

  (18)

The same principle can also be applied to the system of 
nonlinear equations [13].
The number of iterations in LMGC90 software is defined with 
two parameters gs_it1 and gs_it2 [3]. The first loop, known as 
the control loop, is defined by the value of gs_it2. The control of 
accuracy is conducted in each step of the loop, i.e. it is determined 
whether the solution meets the accuracy criterion. If conditions 
of the required point are met, the iteration is interrupted. The 
second loop is the sub-loop of the first loop and is defined by 
the value of  gs_it1. Unlike the first loop, the second loop can 
not interrupt the iteration once the desired accuracy is attained  
because the accuracy control is not made in every step of the 
iteration. The calculation time is thus reduced. The selected 
iteration parameters are presented in Table 1.

Table 1. Parameters selected for iteration procedure

In his dissertation published in 2003, De Castro Oliveira 
determines the average coefficient of friction between stone 
blocks. The coefficient of friction to be used in this paper is set 
to m = 0,62 [14]. An average weight of stone is 2350 kN/m3  [15].
The results are presented using the ParaView software [16] 
which monitors structural changes over time. After analysis of 
results for the earthquake record El Centro, taking into account 
the magnification factor 1, it was established that permanent 
deformations occur due to shear between individual blocks. 
Remaining dome displacements are shown in Figure 11. It can 
easily be seen that nonlinear displacement occurs between the 
first and the second rows of rib elements. Figure 14 shows a 
relative relationship between the first two rows of the rib forming 
stone blocks for various earthquake record magnification 
factors according to the El Centro accelerogram. It can be seen 
from Figure 14 that the dome response after 6 seconds is such 
that relative displacements between the studied stone blocks 
assume a constant value for magnification factors of 2, 2.5, and 
3. Further displacements are caused by dome opening i.e. by an 
increase of distance between individual ribs. This phenomenon can 
be seen in Figure 15, which shows a relative relationship between 
the bases of two ribs that are situated opposite to one another.

Tolerance Q Time step value gs_it1 gs_it2

0,1666-3 0,5 0,002 2000 10
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Figure 14.  Relative displacements between the first two rows of 
rib-forming stone blocks for various earthquake-record 
magnification factors, according to El Centro accelerogram

Figure 15. Correlation between two opposing ribs in their bases 

The keystone push-out problem was also observed. In fact, 
a gradual push-out of the keystone occurs due to alternating 
change in direction of earthquake action. This may be due to the 
poorly defined geometry of the keystone and to poor definition 
of friction between blocks, although the possibility that this is 
the real dome behaviour can not be discarded. The keystone 
push-out phenomena are shown in Figure 16. 

Figure 16.  Dome keystone push-out for various earthquake record 
magnification factors, according to El Centro accelerogram 

It can be seen from this figure that additional push-out 
after six seconds does not occur for factors 1 and 1.5. 
This interruption of keystone push-out is attributed to the 
reduction of acceleration i.e. to the ground acceleration in 6 
seconds for the earthquake record according to the El Centro 

Figure 17. Dome response for El Centro earthquake action, magnified by three times
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accelerogram, as shown in Figure 13. The dome keystone 
collapses (falls-through) after 6 seconds for factors 2, 2.5 and 
3. This can be attributed to the rib separation phenomenon, as 
shown in Figure 16. 
The interaction between individual blocks is shown in 
ParaViewer by means of dots, while the force value is 
designated by dot colour. It can be seen in Figure 18 that 
normal interaction forces are uniform along the ribs, and this 
situation remains unchanged throughout the earthquake 
action. Extreme values occur at the contact between the ribs 
and the support. Maximum value of the normal interaction 
force occurring in the dome model amounts to 43.2 kN. If it is 
assumed that the seating area is 50x50 mm, the stress at the 
contact amounts to 17,28 N/mm2, which is less compared to 
the compressive strength of stone.

Figure 18. Normal interaction forces between stone blocks

Figure 19.  Relative displacements between the first two rows of 
rib-forming stone blocks for five artificially generated 
earthquake records 

The dome response was determined for artificially generated 
earthquake records. The El Centro earthquake record analysis 
pointed to critical points with regard to dome response, relative 
displacements between the first and the second rows of rib-
forming stone blocks, and keystone push-out. The results 
presented in Figures 19 and 20 point to uniform behaviour of all 
five artificially generated earthquake records. 

Figure 20.  Dome keystone push-out for five artificially generated 
earthquake records

5. Conclusion

An approach to development of a discrete numerical model using 
the LMGC90 software based on the NSCD method is presented 
in the paper. The LMGC90 software does not have a graphical 
interface and so the model is described mathematically. The 
LMGC90 is based on an open source philosophy, which makes it 
a readily available program package.
Results obtained by dynamic analysis point to the problems 
of nonlinear behaviour of structures made of stone blocks. 
This nonlinearity is manifested in the shear or sliding between 
blocks, which is difficult to anticipate by means of the FEM. 
The model points to the keystone pushing-out problem, which 
may greatly affect stability of the structure, although additional 
investigations are needed in this respect.
Defining geometry by non-deformable discrete elements is 
a complex process. On the other hand, definition of material 
characteristics is quite simple. The stone weight and the 
coefficient of friction between individual blocks must be known.
The research should be continued by expanding the model 
so as to comprise the entire cathedral, and by conducting 
experimental research with the purpose of obtaining good 
quality information about friction between individual discrete 
elements. In addition, development of model with deformable 
discrete elements might offer a better insight into the state of 
stress in individual blocks.
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