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Prediction of properties of recycled aggregate concrete

Use of recycled materials as replacement for natural aggregate in concrete is 
important considering the environmentally beneficial aspect of its re-use. Relations 
between concrete components and concrete properties cannot be presented based on 
mathematical formulas only. Consequently, artificial neural networks and regression 
techniques were applied to analyse experimental results obtained according to previous 
experimental design. It was established that both techniques enable highly reliable 
modelling of concrete properties based on its components.
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Predviđanje svojstava betona od recikliranih agregata

Upotreba recikliranih materijala kao zamjene prirodnom agregatu u betonu značajna je 
iz ekološki prihvatljivog aspekta njegove ponovne upotrebe. Veza između komponenti 
betona i njegovih svojstava ne može biti prikazana samo na osnovi matematičkih 
formula. Prema tome, primijenjene su umjetne neuronske mreže i regresijska analiza 
eksperimentalnih rezultata postignutih planiranjem eksperimenta. Dokazano je da 
obje primijenjene tehnike omogućuju visoku pouzdanost za modeliranje svojstava 
betona na osnovi njegovih komponenti.
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Vorhersage der Eigenschaften von Recyclingbeton

Die Anwendung von recyceltem Material als Ersatz natürlicher Gesteinskörnung 
für Beton ist aufgrund des ökologisch akzeptablen Aspekts der Wiederverwertung 
bedeutend. Der Zusammenhang zwischen den Betonkomponenten und seinen 
Eigenschaften kann nicht ausschließlich mittels mathematischer Formeln dargestellt 
werden. Daher wurden künstliche neuronale Netze und eine Regressionsanalyse 
experimenteller Resultate im Bezug zur Planung des Experiments angewandt. Es 
wurde bewiesen, dass beide eingesetzten Techniken eine hohe Zuverlässigkeit bei 
der Modellierung von Betoneigenschaften aufgrund seiner Komponenten aufweisen. 
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1. Introduction 

An optimum use of limited natural resources is essential to 
ensure proper environmental protection. Considering that 
aggregates constitute about 60 to 75 percent of the total volume 
of concrete, any reduction in natural aggregate consumption 
will have significant positive influence on the environment 
[1]. In addition, the use of recycled materials as replacement 
for natural aggregate in concrete is the current imperative for 
environmentally friendly re-use of such materials. A type of 
recycled material that can be used as aggregate in concrete is 
the waste generated during production of ceramic materials, 
such as clay bricks and clay roof tiles. Although most of this 
waste is already being incorporated as raw material in new 
ceramic products, some of it, and especially waste produced 
by construction industry, is deposited in landfills. Thus the 
Recycled Aggregate Concrete (RAC) has become an interesting 
environmentally friendly material with certain unknown 
properties that need to be explored in full detail. Debieb and Kenai 
[2] used coarse and fine crushed bricks and reported a 20 % to 30 
% decrease in compressive strength of RAC concrete depending 
on the degree of substitution. Cachim [1] shows that crushed 
bricks can be used as natural aggregate with substitution of up 
to 15 %, without any reduction in the compressive strength of 
concrete. However, reduction in compressive strength (up to 20 
%, depending on the type of brick) was registered when 30 % of 
natural aggregate was replaced with crushed bricks.
In this respect, it can be concluded there is a need for reliable 
prediction of the properties of concrete containing crushed 
clay brick and roof tile (CBT) as partial replacement of natural 
aggregate. 
As the behaviour and properties of CBT have not as yet been 
fully defined, some additional studies should be made to 
determine their behavioural pattern. Nevertheless, extensive 
testing involves certain quantities of material, adequate time, 
and funding. Thus to improve knowledge about behaviour of CBT 
aggregate in concrete, and to reduce the cost and time required 
for testing, models with behaviour simulation capabilities were 
investigated using the input and output data from experimental 
study [3].
One of the modelling techniques that are used for simulating 
behaviour of concrete containing recycled material are Artificial 
Neural Networks (ANN), which have over time become an 
important research tool [4-6]. However, an effectiveness 
and applicability of reported relationships between concrete 
components and properties still remain questionable. There is 
a need for development of accurate and convincing prediction 
models that can save time and costs by providing reliable 
data without experimental testing. This paper provides a 
comprehensive study that involves the use of advanced neural 
networks and mathematical modelling (MM) as a means to 
predict material properties of concrete containing crushed 
clay brick and roof tile (CBT) as partial replacement of natural 
aggregate.

In addition, an attempt was also made to determine importance 
of each output variable using sensitivity analysis. Principal 
objectives of this study are:
 - to explore the possibility of predicting material properties 

with the limited number of inputs, i.e., by using mandatory 
parameters, based on the application of the ANN and 
mathematical modelling.

 - to develop models for predicting material properties, and 
understand the performance and influence of each additional 
input parameter on output data (sensitivity analysis).

2. Experimental design of RAC mixtures

2.1. Types of experimental design

When contemplating optimization of RAC mixtures, it is 
necessary to obtain their basic material properties for varied 
quantities of the concrete components that are supposed to be 
significant for concrete mixture properties. Experimental design 
is applied so that experiments can be defined in an organized 
and clear manner, to enable statistical analysis of resulting data, 
as practiced in various areas of engineering [7-9]. The purpose 
of statistical analysis is to evaluate the second-order model for 
individual concrete properties.
This part of research aims to predict properties of concrete 
containing crushed brick and roof tile (CBT) with mathematical 
model using the response surface method to obtain the second-
order model: 

  (1)

where response marked as Oi-M is a mathematically obtained 
concrete characteristic, F factors are the values of RAC 
components, while b coefficients must be calculated so as to 
correspond as much as possible to experimental response 
values. After that, the concrete mixtures will be optimized 
using a multi-criteria decision-making procedure by overlaying 
the contour plots based on second-order models of particular 
concrete properties.
Two effective experimental design procedures are presented: 
the central composite design (CCD) and the Box–Behnken 
(BB) design. Neither of these design procedures requires a lot 
of observations, i.e. only general data are needed to estimate 
the second-order effects of the response surface, using three 
or five levels for each factor, but not using all combinations of 
levels. Both procedures are rotatable (all points situated at equal 
distance from the centre in any direction have equal variance of 
prediction) at least approximately.
The central composite design (CCD) is an experimental design 
based on the response surface methodology for generation of 
a second-order regression equation. It consists of a factorial 
design (the corners of a cube) together with central and axial 
points (Figure 1). The type of CCD that will be applied for the 
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design of experiments (the position of central and axial points) 
is determined by the number of factors (k) and by the number 
of required properties. Basic types of central composite design 
are:

 - Circumscribed (CCC) - requires five levels (-α, -1, 0, 1, α)
 - Inscribed (CCI) - requires five levels  (-1, - 1/α, 0, 1/α, 1)
 - Faced (CCF) - requires three levels  (-1, 0, 1)

where the distance of axial points α can be determined according 
to Montgomery [10]:

 (2)

Three types of central composite designs are (CCD) shown in 
Figure 1. It can be noted that the CCC explores the largest and 
the CCI explores the smallest process space. Both the CCC and 
CCI have rotatable designs, which is not the case for the CCF. In 
the CCC design, the design points are characterized by a circle 
circumscribed around the factorial square, [11].
The Box-Behnken (BB) design can be useful when the intent is 
to avoid extreme combinations of factors. The BB design (Figure 
2) is rotatable, requires 2k(k-1)+1 experiments and three level 
factors (–1, 0, +1).

Figure 2. Example of Box-Behnken design (k = 3)

3. Application of experimental design

Seven basic RAC components, important for optimisation and 
used in experimental design, are: cement, water/cement ratio, 
water reducing admixture, percentage of crushed roof tile (CT), 
and percentage of recycled aggregate made of crushed brick (CB) 
fractions 0-4 mm and 4-16 mm. The variation range of each 
factor is shown in Table 1. The top and bottom limits correspond to 

standard factor levels -α and α for circumscribed CCD only. For all 
other designs, top and bottom limits correspond to standard factor 
levels -1 and 1, respectively. All other factor levels can easily be 
calculated using the defined top and bottom factor levels.
The top and bottom limits in Table 1 are chosen based on 
previously conducted experimental investigations and according 
to literature recommendations [12-16]. According to Hansen 
[17], cement content in concrete with CBT as aggregate can be 
increased by up to 20 % as compared to concrete with natural 
aggregate. Also, it depends on the type and composition of CBT 
used as aggregate. 

Table 1. Range of basic components of RAC concrete (factors)

Natural aggregate dolomite (NA) is also 
used in mixtures, but its percentage 
depends on the percentage of CB and CT 
aggregate:

PA(%) = 100% - DC(%) - DO(%) (3)

and therefore NA is not a factor. 
Furthermore, the percentage of CB and 
CT aggregate must be limited as follows:

DO(%) + DC(%) ≤ 100 % (4)

The central composite design obviously has a significantly 
higher number of experiments as compared to Box-Behnken 
(BB) design, Table 2.

Table 2. Number of experiments

As mentioned in Miličević et al. [18], the cost of one mixture 
amounts to approximately € 6125. A simple calculation reveals 
that the central composite experimental design for seven factors 
is not cost and time effective. Therefore, the Box-Behnken 
experimental design will be considered for determining an 
optimum concrete mixture containing recycled aggregate. The 
experimental investigation defined by Box-Behnken design is 
shown in Miličević et al. [19]. 

Figure 1. Example of central composite designs (k = 2): : a) CCD; b) CCI; c) CCF

Factor Concrete components Lower limit Upper limit

F1 Cement [kg] 300 500

F2 w/c ratio 0,15 0,60

F3 Concrete additive [%] 0 1

F4 CB 0-4 mm [%] 0 50

F5 CB 4-16 mm [%] 0 50

F6 CT 0-4 mm [%] 0 50

F7 CT 4-16 mm [%] 0 50

Types of planning CCD CCC CCF BB

Number of experiments 143 143 143 62
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4. Prediction of concrete properties

4.1. Experimental results

Concrete specimens are tested in accordance with HRN EN 
12390-3:2009, HRN EN 12390-5:2009, HRN EN 12390-
7:2009, and HRN U.M1.025:1982. Figures 3 and 4 show 
experimental results for density (O1), compressive strength 
(O2), flexural strength (O3) and modulus of elasticity (O4). 
Experimental testing of concrete properties O1 to O4 was 
conducted at the age of 56 days.

4.2.  Properties of concrete obtained by 
mathematical model

Coefficients β needed for Oi-M response in Eq. (1) were calculated 
using the regression analysis in Matlab, whose algorithm is 
based on the QR matrix decomposition. The condition (5) should 
be fulfilled to perform the algorithm successfully. 

number of coefficients ≤ number of experiments = 62  (5)

The second-order model (1) contains 36 model parameters 
and so the condition (5) is fulfilled. Table 3 shows coefficients 
β calculated for every concrete property selected (O1-M to O4-
M). 
Results of RAC concrete properties with CBT aggregate for 
mathematical model are presented in Section 5 and compared 
to the ANN modelling results.

4.3.  Properties of concrete predicted with artificial 
neural network

According to Haykin [21], Artificial Neural Networks (ANN) are 
a massive parallel architecture that can be used to solve and 
find answers to demanding problems using simple mutually 
dependent processing elements (artificial neurons). Essentially, 
they are analogous to natural neurons in the brain, which 
consist of many simple interconnected elements arranged in 
several layers. An ANN has considerable capabilities in data 
processing and learning and can therefore be an effective tool 
for engineering applications.

Figure 5. Architecture of neural network

An artificial neuron (Figure 5) consists of five basic parts: input 
neurons, weights, sum function, activation function, and output 
neurons. Input neurons are the basic input receiving data at the 

Figure 3. Density and flexural strength of hardened concrete

Figure 4. Properties of hardened concrete at 56 days
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beginning of the neural network processing, and they pass the 
data over to adjacent neurons. Weights indicate contribution 
of the input data from the preceding layer to neurons situated 
in the next layer. The sum function calculates joint outcome of 
inputs and weights (net input that approaches adjacent neuron). 
The activation function is the net input processing function 
obtained from the sum function, and it determines the neuron 
output.

4.3.1. Back-propagation algorithm

According to Lippman [22], the multi-layer back-propagation 
network is the most popular ANN paradigm. It is use quite 
frequently because of its efficient generalization capabilities. In 
general, the neural network processing consists of two distinct 
phases: training phase and testing phase. 
ANNs have the ability of achieving a favourable level of 
generalization from the patterns on which they have been 
trained [23]. Training incorporates processing the neural network 
with a set of known input-output data. Back-propagation neural 
networks generally consist of layers with neurons: an input, an 
output, and one or more hidden layers. The learning process 
is continued in the output layer, where the error between the 
network outputs and desired outputs is calculated, and then 
propagated back to the network with updated weights in the 
direction in which the performance function decreases most 
rapidly [24]. All the networks were trained using the Levenberg–
Marquardt algorithm. The training was stopped when any of 
these conditions was met:

 - Maximum number of 10,000 epochs was reached (MAX_EPOCHS)
 - MSE was minimized to within 1 % of the variance of the output data 

being modelled (MIN_MSE)
 - Performance gradient of the Levenberg–Marquardt algorithm fell 

below 1e-7 (MIN_GRAD)
 - Adaptive momentum value of the Levenberg–Marquardt algorithm 

exceeded 1e10 (MAX_MU).

When the network has been trained, it can be tested on a set 
of new input and output data that have not been used in the 
training process.

4.3.2. Number of hidden neurons

Random selection of a number of hidden neurons might cause 
either over fitting or under fitting of prediction models [25]. This 
concern arises because the network corresponds to the data so 
closely that the ability for generalization over the test data can 
be lost. 
The number of hidden neurons greatly influences the neural 
network stability as the latter is estimated via error (minimum 
error reflects better stability). The excessive number of hidden 
neurons will cause over fitting in which case neural networks will 
overestimate complexity of the target problem. Consequently, 
determination of a proper number of hidden neurons to prevent 
over fitting is critical for solving prediction problems, with stable 
generalization capability and the lowest possible deviation.
The number of hidden neurons was determined using proposals 
provided by 15 researchers [25-27] who tested and proposed 

Table 3. Coefficients β

β O1-M O2-M O3-M O4-M β O1-M O2-M O3-M O4-M

β0 2038.40 23.30 2.19 14436.00 β24 -1.09 3.94 0.05 875.59

β1 88.21 9.22 0.49 2153.00 β34 -89.80 -6.73 -0.36 -1519.80

β2 5.90 -3.95 -0.16 -1833.80 β35 -18.71 0.84 -0.05 -974.25

β3 45.90 -0.31 0.31 387.05 β36 -35.70 -5.37 -0.13 -1614.80

β4 -8.82 0.17 -0.05 -123.27 β37 -82.51 -6.54 -0.36 -1835.40

β5 -94.82 -3.25 -0.24 -3432.00 β45 -23.28 -0.21 0.03 -478.55

β6 -25.99 -1.60 -0.04 -1325.90 β46 -68.08 -4.40 -0.38 -1346.20

β7 -119.93 -5.28 -0.29 -3328.60 β47 -1.05 -0.88 -0.03 -127.80

β12 54.79 3.38 0.29 954.11 β56 -3.70 -1.04 -0.06 -361.38

β13 79.63 3.44 0.28 3298.30 β57 21.57 3.03 0.05 307.36

β14 27.94 2.92 0.04 348.44 β67 -49.77 -0.33 -0.17 -950.54

β15 -6.05 2.17 0.08 -133.11 β11 26.60 3.10 0.12 2396.60

β16 -40.35 -1.55 -0.14 -961.18 β22 92.68 7.11 0.52 2413.60

β17 -15.72 -4.56 -0.08 8.54 β33 21.39 3.18 0.08 1185.40

β23 100.92 8.77 0.61 546.14 β44 -34.37 -0.72 -0.05 214.72

β24 3.85 0.70 0.17 612.30 β55 -82.66 -5.38 -0.18 607.61

β25 36.31 5.48 0.13 -77.78 β66 -47.69 -1.28 -0.14 -670.30

β26 33.77 0.17 0.09 304.32 β77 40.25 1.77 0.29 3894.70
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various methodologies. These empirical criteria for the number 
of hidden neurons in the first hidden layer are presented in Table 
4. 
The results of 15 equations from Table 4 are presented and 
summarized in Figure 6 according to the number of input 
neurons (Table 1: F1-F7, Ni=7 because of 7 components of 
concrete), and number of outputs (O1-O4, although there are 
4 concrete properties No=1 because of the accuracy of neural 
network processing).

Table 4. Empirical criteria for the number of hidden neurons

Figure 6. Number of hidden neurons for Ni=7, No=1

4.3.3. Neural network model and parameters

The ANN model presented in this research has seven neurons 
in the input layer and one neuron in the output layer as shown 
in Figure 7. The parameters for input layer were: cement (F1), 
v/c (F2), water reducing admixture (F3), CT 0-4 (F4), CT 4-16 
(F5), CB 0-4 (F6) and CB 4-16 (F7). The output neural network 
layer consists of four material properties: density (O1-N), 
compressive strength (O2-N), flexural strength (O3-N), and 

static modulus of elasticity (O4-N) (only one output at the time 
was applied under network processing). 

Figure 7.  Structure of ANN network: single hidden layer with six 
hidden neurons

The range of input parameters is shown in Table 5. One hidden 
layer with three, six, and eight neurons is used in the multilayer 
neural network architecture, as presented in Figure 7. Because 
of minimum absolute percentage error values for training and 
testing sets, only results for six neurons in a hidden layer are 
presented in this study.
The performance of an ANN model primarily depends on the 
network architecture and parameter settings. The values of 
parameters used in the neural network model are given in Table 
6.
A total of 62 experiments were trained and tested by means 
of ANNs. Among 62 experiment sets, 50 sets were randomly 
chosen as a training set, while the remaining 12 data were used 
for testing the results.

Table 5. Range of input parameters in ANN models

Table 6. Neural network parameters used in ANN model

No. Method Nh Summarized in

1. Neville (1986) 0.75⋅Ni (Ozturan, 2008)
2. Neville (1986) 2⋅Ni+1 (Ozturan, 2008)
3. Hecht-Nielsen (1987) ≤ 2⋅Ni Sonmez, 2006
4. Hush (1989) 3⋅Ni Sonmez, 2006
5. Popovics (1990) (Ni+No)/2 (Ozturan, 2008)
6. Gallant (1993) 2⋅Ni (Ozturan, 2008)
7. Wang (1994) 2⋅Ni/3 Sonmez, 2006.
8. Masters (1994) (Ni+No)1/2 Sonmez, 2006.
9. Li (1995) ((1+8 Ni)1/2-1)/2 (Sheela, 2013)

10. Tamura (1997) Ni+1 (Sheela, 2013)
11. Lai (1997) Ni (Ozturan, 2008)
12. Nagendra (1998) Ni+No (Ozturan, 2008)
13. Zhang (2003) 2Ni/n + 1 (Sheela, 2013)
14. Shibata (2009) (Ni⋅No)1/2 (Sheela, 2013)
15. Sheela (2013) (4 Ni

2+3)/( Ni
2-8) (Sheela, 2013)

Ni – number of input neurons; No – number of output neurons

Inputs Range

Cement [kg] 300-500

w/c ratio 0.4-0.6

Water reducing admixture 0-1

CT 0-4 0-50

CT 4-16 0-50

CB 0-4 0-50

CB 4-16 0-50

Parameters ANN

Number of input layer units 7

Number of hidden layers 1

Number of hidden layer units 6

Number of output layer units 1

Learning rate 0.01

Performance goal 0

Maximum number of epochs 10000
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In this study, the Matlab ANN toolbox 
[28] is used for ANN applications. All the 
networks were trained using Levenberg–
Marquardt algorithm with "log-sigmoid 
"transfer functions in between first 
(input) and second (hidden) layers and 
‘linear’ transfer function between the 
second and third layers (output). 

4.3.4. Performance evaluation methods

Five different statistical performance 
measures are used in order to evaluate effectiveness of each 
network and its ability to make accurate predictions. The 
following evaluation measures were used for the accuracy of 
the proposed learning models:
a)  Mean absolute error (MAE) – is a quantity used to measure 

how close predictions are to the known outputs:

 (6)

where y’ is the predicted value; y is the actual value; and n is the 
number of data samples.

b) Root mean square error:

 (7)

c)  Mean absolute percentage error:

 (8)

d)  Coefficient of correlation:

 (9)

where y’ is the mean predicted value; y is the mean actual value.

e)  Nash-Sutcliffe efficiency:

 (10)

A lower value of MAE, RMSE, MAPE with higher values of R and 
E above 0.90 illustrates good efficiency and predictability of the 
model.

4.3.5. Sensitivity analysis

Complex relationships between basic concrete components 
F1,...,7 and material properties as target output in ANN can be 
defined by sensitivity analysis. The forward stepwise sensitivity 
analysis method was applied in this paper in order to identify 
the most significant input-output relations. 
The forward stepwise method estimates the change in the root 
mean square error of the network by sequentially adding input 
neurons to the neural network (rebuilding neural network every time 
at each step). The resulting change in the RMSE for each variable 
inclusion illustrates the relative importance of the input variables 
with regard to output results. In sensitivity analysis, RMSE presents 
an error and importance of the variable for the required output 
data. The RMSE, as presented in Figure 8., is normalized to values 
ranging from 0 to 1 (where 0 stands for minimum RMSE). Higher 
value indicates higher importance of the input variable. According 
to sensitivity analysis results, all inputs are very important and 
generally have high influence on all four outputs. Consequently, all 
input data will be included in further analysis.

Table 7. The range of experimental output parameters in ANN models

Symbol Parameter Unit Minimum Maximum Standard deviation Mean

O1 Density kg/m3 1698.84 2450.27 171.06 2047.25

O2 Compressive strength N/mm2 8.70 61.75 12.05 26.42

O3 Flexural strength N/mm2 2.31 8.84 1.49 4.88

O4 Modulus of elasticity N/mm2 9852.82 31995.86 5133.65 18373.03

Figure 8. Sensitivity analysis results
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5. Results and discussion

The Artificial Neural Network (ANN) and mathematical model 
(MM) are tested in this study as an alternative to classic 
experimental tests for simulating material properties in 
concrete containing crushed brick and roof tile aggregate. The 

results obtained are evaluated through comparison of MM and 
ANN model values. 

5.1. Output 1 – Density

Figure 9. shows predicted density of concrete with CBT for both 

Figure 9. ANN and MM results for output 1

Figure 10. ANN and MM results for output 2

Table 8. Statistical performance of ANN and MM models for output 1

Table 9. Statistical performance of ANN and MM models for output 2

Model MAE [kg/m3] RMSE [kg/m3] MAPE [%] R E

ANN 37.694 2.571 1.897 0.999 0.999

MM 58.645 0.015 2.910 0.999 0.998

Model MAE [kg/m3] RMSE [kg/m3] MAPE [%] R E

ANN 0.974 0.075 4.679 0.998 0.997

MM 5.469 1.970 22.250 0.973 0.931
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training and testing sets of the ANN and MM models. The results 
clearly show that values predicted with ANN and MM models are 
highly consistent with experimental results for most of the samples.
The MAE, RMSE, MAPE, R, and E values for both modelling 
techniques, ANN and MM, are given in Table 8. It can be seen 
that the MM model has the smallest RMSE (0.015 kg/m3), 
but the ANN model has the smallest MAE and MAPE, and 
the highest E (0.999). However, it should be noted that the 
modelling results are exceptionally accurate. Therefore, there is 
no doubt regarding accuracy of prediction performances of MM 
and ANN models for density of concrete with CBT.

5.2. Output 2 – Compressive strength

The MM model resulted in lower prediction accuracy and higher 
residuals compared to ANN, Figure 10. Although the MM model 
provided similar average values of correlation coefficient and Nash-
Sutcliffe efficiency when compared to ANN model, it was unable to 
capture smaller errors (MAPE of 22.25 %), as shown in Table 9. 
In contrast, a fairly high predictability was achieved with the 
ANN model, with an R and E of 0.99, and a low root mean square 
error (RMSE) together with low MAPE, indicating a high capacity 
to simulate the compressive strength of concrete containing 
crushed brick and roof tile aggregate.

5.3. Output 3 – Flexural strength

According to the ANN and MM model predictions, the 
relationships between experimental and modelled output values 

are well defined, as shown in Figure 11. In addition, statistical 
measures accounted for maximum 11 % of absolute errors. 
Quite high correlation was detected between experimental 
and modelled values: the correlation coefficient between 
experimental flexural strength and ANN flexural strength 
amounted to R = 0.98 and E = 0.96, i.e. the ANN deviation was 
smaller by 9 % and 18 % compared to the MM model.
These results show that the ANN model developed for flexural 
strength exhibits better performance in simulating predicted 
values compared to mathematical model. 

5.4. Output 4 – Modulus of elasticity

Results for output 4 show prediction performances for two 
learning prediction-based models, ANN and MM, for the modulus 
of elasticity. All results obtained by experimental studies and 
predicted by training and testing ANN and MM models are given 
in Figure 12. As can be seen in Figure 11, the values obtained 
by training and testing ANN and MM models are very close to 
experimental values. These results show that both models can 
competently be used for making generalisations between input 
and output variables, with efficient predictions.
The statistical modelling performance for both models is shown 
in Table 11. The MM model exhibits the lowest error rate at 
RMSE = 7.05 N/mm2. Overall, the MM model for the modulus of 
elasticity achieved good outcomes in terms of overall statistical 
performance. Comparison of five statistical measures showed 
that the ANN prediction model generally performs better than 
the MM, with good performance and lower error values.

Figure 11. ANN and MM results for output 3

Table 10. Statistical performance of ANN and MM models for output 3

Model MAE [kg/m3] RMSE [kg/m3] MAPE [%] R E

ANN 0.199 0.2087 4.069 0.979 0.960

MM 0.5275 0.0823 11.28 0.891 0.798
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6. Conclusion

The objective of this study was to make a comprehensive 
comparison of various prediction techniques used separately 
for simulating material properties of concrete containing 
the crushed brick and roof tile aggregate that was previously 
experimentally examined.
Two individual learning techniques (ANN and MM) were used to 
develop the prediction models. When compared to experimental 
results for density, compressive and flexural strength, and modulus 
of elasticity, both models were found to be capable of generalizing 
between input and output variables with reliable predictions. On an 
average, MM model performed the best in terms of RMSE (Outputs 
1, 3 and 4). However, the ANN model exhibited lower error rates for 
another four performance measures, and this for all four outputs.

The contribution of this paper lies in broadening knowledge 
base in this area, by proposing and checking techniques for 
simulating material properties of concrete with recycled 
aggregate. These models can be used in cases when there 
are too many inputs and properties that need to be known 
or defined within a restricted period of time. These methods 
also contribute to a remarkable reduction in computational 
time and money savings compared to experimental tests, 
without any significant loss in accuracy. Statistical measures 
used to evaluate performance of the models showed that 
both approaches can effectively be used for making reliable 
predictions, although the artificial neural networks model 
resulted in lower deviations, and so it can be regarded as a 
powerful tool for predicting material properties of recycled 
concrete in the considered range of input values.

Figure 12. ANN and MM results for output 4

Table 11. Statistical performance of ANN and MM models for output 4

Model MAE [kg/m3] RMSE [kg/m3] MAPE [%] R E

ANN 538.286 13.298 3.288 0.986 0.969

MM 1759.551 7.047 10.206 0.909 0.826
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