# Procjena gubitka i ocjena potresnog rizika u istočnoj Turskoj

Autori:



Doc.dr.sc. Ercan Işık, dipl.ing.građ. Sveučilište Bitlis Eren, Turska Fakultet inženjerstva i arhitekture Odjel za građevinarstvo ercanbitliseren@gmail.com



Doc.dr.sc. <mark>Mustafa Kutanis,</mark> dipl.ing.građ. Turska <u>kutanis@gmail.com</u>



Doc.dr.sc. . **İhsan Engin Bal**, dipl.ing.građ. Tehničko sveučilište u Istanbulu, Turska Institut za potres i sprječavanje katastrofa <u>iebal@itu.edu.tr</u>

#### Ercan Işık, Mustafa Kutanis, İhsan Engin Bal

## Procjena gubitka i ocjena potresnog rizika u istočnoj Turskoj

Potresni rizik urbanog građevnog fonda u Turskoj dobiva na sve većoj važnosti zbog vrlo visoke potresne opasnosti kombinirane s vjerojatno oštećenim i gusto naseljenim građevnim fondom. U radu je prikazano istraživanje usmjereno na istočni dio Turske gdje su seizmički izvori kao i stupanj potresne opasnosti drugačiji. Rezultati istraživanja pokazuju da je potresna sigurnost civilnih građevina i u ovim dijelovima znatno ugrožena te da su očekivani gubici visoki i na razini "ne prihvatljivosti". U radu je dana i procjena ekonomskih gubitaka i smrtnosti, ako se ostvari neki od očekivanih potresnih scenarija.

#### Ključne riječi:

urbano područje, potresni rizik, potresni scenarij, procjena gubitka

Subject review

Pregledni rad

### Ercan Işık, Mustafa Kutanis, İhsan Engin Bal

## Loss Estimation and seismic risk assessment in Eastern Turkey

The seismic risk to urban building stock in Turkey is gaining in importance due to very high seismic hazard combined with its vulnerable and densely populated building stock. The research oriented on the eastern part of Turkey, where seismic sources and the level of seismic hazard are different, is presented in the paper. The results of the research show that the seismic safety of civil buildings is highly compromised even in this part of the country, and that expected losses are high and attain the level of "non-tolerable" losses. Economic losses and fatalities are also estimated in the paper, in case of realization of some of the expected scenarios.

#### Key words:

urban area, earthquake risk, earthquake scenario, loss estimation

Übersichtsarbeit

### Ercan Işık, Mustafa Kutanis, İhsan Engin Bal

# Einschätzung des Verlustes und Beurteilung des Erdbebenrisikos in der Osttürkei

Das Erdbebenrisiko des städtischen Baufonds in der Türkei gewinnt wegen der sehr hohen Erdbebengefahr kombiniert mit den wahrscheinlich beschädigten und dem dicht besiedelten Baufond zunehmend an Bedeutung. In der Abhandlung wird eine Untersuchung angeführt, die auf den östlichen Teil der Türkei ausgerichtet ist, in dem die seismischen Quellen sowie der Grad der Erdbebengefahr anders sind. Die Ergebnisse der Untersuchung zeigen, dass die Erdbebensicherheit der zivilen Gebäude auch in diesen Teilen erheblich beeinträchtigt ist, und dass die erwarteten Verluste hoch und auf dem Niveau von "nicht akzeptabel" sind. In der Abhandlung wurde auch eine Einschätzung der wirtschaftlichen Verluste und der Sterberate angegeben, sollten einige der erwarteten Erdbebenszenarien eintreten.

#### Schlüsselwörter:

Stadtgebiet, Erdbebenrisiko, Erdbebenszenario, Einschätzung des Verlustes

## 1. Uvod

Unatoč katastrofalnim potresima u istočnoj Turskoj, većina istraživanja procjene gubitaka i ocjene potresnog rizika usmjerava se na sjeverozapadni dio zbog povećane koncentracije stanovništva [1-6]. Ta činjenica ne bi trebala odvratiti pažnju od isticanja vrlo visokih ekonomskih i životnih rizika rjeđe naseljenih regija u zemlji. Posljednji su potresi iz 2011. godine [7, 8] u gradu Vanu, koji je u susjedstvu grada Bitlisa, pokazali još jednom da je urbani građevni fond pod ozbiljnim potresnim rizikom koji prijeti društvu. Prilično česti potresi srednje i veće magnitude koji pogađaju regiju daju korisne uvide u naslijeđenu vjerojatnost oštećenja građevnog fonda regije. Ovaj rad je pokušaj da se istraže povijesno značajni potresi velikih magnituda u području sliva jezera Van, zajedno s dva nedavna potresa u Tabanlı ( $M_w$ = 7,2) i Edremit ( $M_w$  = 5,6), posebno za područje Bitlisa koji je relativno mali grad sa 67.000 stanovnika.

Potresni rizik građevnog fonda sve više privlači pažnju akademske zajednice kao i upravnih tijela zbog sve veće urbanizacije i koncentracije stanovništva u područjima sklonim i osjetljivim na potrese. Turska je, naročito nakon 1999. godine, poznata kao jedna od najsklonijih regija potresima na svijetu. To je donekle istina ako se uzme u obzir da većini zemlje prijete potresi. Česti potresi srednje i visoke magnitude pogađaju ne samo zapadne dijelove već i ostatak zemlje. Ovaj rad nastoji upozoriti na dramatične ishode u slučaju da regiju pogodi potres visoke magnitude, sličan onima koji su se dogodili u prošlosti.

Treba istaknuti da je potres iz 2011. godine odnio 641 ljudski život u gradu Vanu i okolici.

Lokacija grada Vana, kao i grada Bitlisa koji je na suprotnoj strani jezera Van, podložna je destruktivnim potresima. U ovom radu je istraživan ukupan potresni rizik urbanog građevnog fonda. Kod izračuna očekivanih gubitaka uzete su u obzir samo građevine od armiranog betona te je korišten scenarij potresa koji je temeljen na ponavljanju prošlih potresnih događaja. Kako bi procijenili gubitke, primijenjen je relativno izravan pristup gdje je napravljeno šest različitih potresnih scenarija i time provedeno šest determinističkih procjena gubitaka. Potresni scenariji su definirani pomoću postojećih zapisa potresa u regiji. Ideja je, u osnovi, dobiti uvid u stupanj moguće oštećenosti grada Bitlisa koji je kao primjer odabran da predstavlja istočni dio Turske, pod vrlo vjerojatnim i realističnim scenarijima podrhtavanja tla. Rezultati iskazani u pogledu smrtnosti su ekonomskih i gubitaka. Srednji

omjer štete (eng. *mean damage ratio* - MDR), omogućava jednostavnu naznaku izravnih ekonomskih gubitaka za svaki pojedini potresni scenarij. Taj omjer se određuje na način da se podijele troškovi potrebni za popravke izravne štete na građevinama (konstrukcijski ili nekonstrukcijski popravci ili ojačanja) s troškovima potrebnim da se te građevine ponovno izgrade. MDR se izražava kao jedan broj na ljestvici te daje naznaku o stupnju štete.

## 2. Seizmičnost grada Bitlisa

Grad Bitlis je smješten u slivu jezera Van, u trusnoj zoni Bitlis (eng. *Bitlis Thrust* Zone) koja je utonula u tektonski bazen [9]. Sliv jezera Van je nastao prije otprilike sto tisuća godina kada je lava vulkana Nemrut blokirala izlijevanje vode prema slivu Muş [10]. Geološka karta sliva jezera Van je prikazana na slici 1.

Glavno tektonsko slijeganje istočne Anatolije se uglavnom odvija kolizijom arapske ploče, koja se giba ugrubo prema sjeveru, s anatolijskom pločom duž deformacijske zone poznate pod imenom Bitlis trusna zona (slika 2.). Povijesni izvori govore o slivu jezera Van kao seizmički aktivnoj regiji. Značajni potresi u Bitlisu i okolici koji su se dogodili prije 20. stoljeća sažeti su u tablici 1. Prema turskoj karti potresnih područja, grad Bitlis je smješten u seizmičkoj zoni prvog stupnja, što uvjetuje primjenu vrijednosti vršnog ubrzanja tla u iznosu od 0,40 g prilikom definiranja projektnog spektra, uz 475-godišnji povratni period.



Slika 1. Geološka karta regije jezera Van. N – vulkan Nemrut, S – vulkan Süphan u neposrednoj blizini jezera. EATF – istočni anatolijski rasjed; NATF – sjeverni anatolijski rasjed [11]



Slika 2. Tektonska karta Turske s glavnim sadržajima [12]

| Tablica 1. Značajni potresi koji su pogodili Bitlis i njegovu okolicu prije 20. stoljeća |                |     |            |        |                   |     |      |  |  |  |  |
|------------------------------------------------------------------------------------------|----------------|-----|------------|--------|-------------------|-----|------|--|--|--|--|
| Godina                                                                                   | Lokacija       | Mw  | l<br>(MMS) | Godina | Lokacija          | М   | I    |  |  |  |  |
| 461.                                                                                     | Malazgirt      |     | Х          | 1646.  | Van i okolica     |     | VII  |  |  |  |  |
| 1012.                                                                                    | Malazgirt      |     | VII        | 1647.  | Van - Muș -Bitlis |     | IX   |  |  |  |  |
| 1101.                                                                                    | Bitlis/Van     |     | VI         | 1648.  | Van i okolica     | 6,7 | VIII |  |  |  |  |
| 1110.                                                                                    | Bitlis/Van     |     | VIII       | 1670.  | Hizan - Siirt     | 6,6 |      |  |  |  |  |
| 1111.                                                                                    | Bitlis/Van     |     | IX         | 1682.  | Bitlis            |     |      |  |  |  |  |
| 1208.                                                                                    | Bitlis/Van/Muș | 6,5 |            | 1696.  | Çaldıran - Bitlis | 6,8 | Х    |  |  |  |  |
| 1245.                                                                                    | Bitlis/Van/Muș |     | VIII       | 1701.  | Van i okolica     |     | VIII |  |  |  |  |
| 1246.                                                                                    | Lake Van       |     | VIII       | 1704.  | Van               |     | VII  |  |  |  |  |
| 1275.                                                                                    | Bitlis/Van     |     | VII        | 1705.  | Bitlis            | 6,7 | IX-X |  |  |  |  |
| 1276.                                                                                    | Bitlis/Van     |     | VIII       | 1715.  | Van - Erçiş       | 6,6 | VIII |  |  |  |  |
| 1282.                                                                                    | Bitlis/Van     |     | VII        | 1869.  | Bitlis i okolica  |     | VII  |  |  |  |  |
| 1345.                                                                                    | Malazgirt      |     | VIII       | 1871.  | Van -Elazığ       | 5,5 | VII  |  |  |  |  |
| 1363.                                                                                    | Muș            |     | IX         | 1881.  | Van i okolica     | 7,3 | IX   |  |  |  |  |
| 1415.                                                                                    | Lake Van       |     | V          | 1884.  | Bitlis - Pervari  | 6,9 |      |  |  |  |  |
|                                                                                          |                | -   | -          | 1      |                   |     |      |  |  |  |  |

| ablica | 1 7načajni  | notroci koji | u nogodili  | Ditlic i piogovu  | okolicu prijo | 20 staliada  |
|--------|-------------|--------------|-------------|-------------------|---------------|--------------|
| aviica | 1. Znacajin | potresi koji | su pogouiii | Dittis i iljegovu | okoncu prije  | 20. Stoljeta |

## Gradevni fond korišten pri procjeni gubitaka

VI

VIII

VIII

1891.

1892.

Elazığ-Bitlis

Elazığ-Muş

VIII

VII

5.5

Kako bi se odredila polja gibanja tla te dala procjena gubitaka za njih, provincijsko središte Bitlisa je podijeljeno u 12 regija (slika 3.). Svaka regija predstavlja podupravu (tur. mahalle). Iako je razlučivost ulaznih podataka važan faktor prilikom procjene gubitaka [14], smatra se da je podjela na poduprave zadovoljavajuća prilikom određivanja medijana vrijednosti procjene gubitaka. Poduprave ili čak postkodovi (postkodovi su općenito manje geografske jedinice od poduprave u turskom sustavu administracije) ne predstavljaju dovoljnu razinu razlučivosti prema Balu i dr., 2010. [14], ako se traži i nesigurnost unutar svake proračunske jedinice. U ovom istraživanju odabrane su poduprave zato što su uvjeti tla u svih 12 poduprava kao i distribucija građevina prilično homogeni. Nadalje, predstavljeni rezultati su na razini medijan vrijednosti, nesigurnosti u proračunima su razmatrane za svaki stupanj, ali nisu prikazane te se stoga primjena poduprava kao razlučivosti proračuna može opravdati.

Prilikom definiranja građevnog fonda primijenjen je cenzus iz 2000. godine [15]. Prema tome, 86 % građevina smještenih u provincijskom središtu, koji je odabran kao osnova za izračun gubitaka, izgrađeno je od armiranog betona, 13 % od nearmiranog ziđa i 1 % je označeno kao "ostalo". U provedenom istraživanju razmatrane su samo građevine napravljene od armiranog betona. Iako se pomoću DBELA metode mogu procijeniti očekivani gubitci kod građevina izvedenih od nearmiranog ziđa, vizualnim pregledom je utvrđeno da je većina zidanih konstrukcija izvedena od nepravilnog kamenog ziđa koje DBELA ne pokriva i samim time se ne može primijeniti za procjenu gubitaka ovog tipa konstrukcija. Unatoč ovom pojednostavnjenju, ne bi se trebale očekivati velike promjene u procjeni rizika, budući da armiranobetonske predstavliaiu građevine 83 % građevnog fonda. Ipak, radi jednostavnosti, promatrane su samo armiranobetonske konstrukcije.



Slika 3. 12 poduprava provincijskog središta Bitlisa, korištenih pri procjeni gubitaka

Nemrut

Nemrut

Bitlis

1439.

1441.

1582.

Budući da sadašnje stanje ne odgovara cenzusu iz 2000. godine, proveden je vizualni pregled ulica kao i pregled općinskih arhiva kako bi se odredio broj i vrsta građevina u 12 poduprava. Zabilježen je broj armiranobetonskih građevina u svakoj ulici, broj katova i godina izgradnje te konstrukcijski sustav tih građevina (npr. okvirni sustav, okvir s ispunom, dvojni sustav i ostalo). Terenski i općinski podaci kombinirani su s cenzusom iz 2000. godine te je definiran set podataka koji će se provesti metodom DBELA.

Procjena gubitaka zbog štete je napravljena za 5.186 građevina (od 2010. do danas) u ukupno dvanaest ulica, pod okolnostima šest različitih potresnih scenarija. Podaci o građevinama izgrađenim nakon konsenzusa iz 2000. godine dobiveni su iz općinskih arhiva. Pri svakom razmatranju utjecaja nekog od potresnih scenarija, napravljeno je 100 polja podrhtavanja tla s prostornom korelacijom *intra-event* nesigurnosti, i definiran je građevni fond za svaku podupravu. Polja gibanja tla oblikovana su u geometrijskom središtu svake poduprave, pri čemu je pretpostavljeno da se cjelokupni građevni fond nalazi u istoj točki. Taj je pristup već istraživan i Bal i dr. [14] ga smatraju prilično preciznim.

Općinski dokumenti pokazuju da je približno 15 % postojećih armiranobetonskih zgrada u Bitlisu do 2010. godine izvedeno prema seizmičkoj normi iz 1998. godine ili poslije, što znači da su one projektirane prema zahtijevanom kapacitetu nosivosti te da zadovoljavaju oblikovne uvjete osiguranja zahtijevane duktilnosti. Te su građevine klasificirane kao "dobre" u DBELA-i, što znači da su u skladu s normom. Dio tih građevina (od 2 od 15 %) smatrane su dvojnim sustavom (armiranobetonski okvir+vertikalni zid) te da su također u skladu s seizmičkom normom iz 1998. Vizualni pregledi na približno 8 % od ukupnih građevina pokazali su da 5 % građevina izvedenih prije seizmičke norme (građevine prije 1998. godine) imaju dvojni nosivi sustav. Ukratko, 80 % postojećih armiranobetonskih građevina nije u skladu s relevantnom seizmičkom normom i nema nosive zidove (označene su kao slabi-okvir-normalno i slabi-okvir-ugrađeno u DEBLA-i), 5 % armiranobetonskih građevina ima nosive zidove (slabi-dvojni-normalno i slabi-dvojni-ugrađeno u DEBLA-i), 13 % je kompatibilno sa seizmičkom normom i bez nosivih zidova (dobro-okvir-normalno i dobro-okvir-ugrađeno u DEBLA-i) te 2 % u skladu sa seizmičkom normom i s nosivim zidovima (dobrodvojni-normalno i dobro-dvojni-ugrađeno u DEBLA-i). Takva DEBLA klasifikacija je važna jer se odnosi perioda i visine kao i izračun kapaciteta pomaka konstrukcije razlikuju od kategorije do kategorije [15]. Postotak zgrada s dvojnim sustavom ili sa seizmičkom normom kompatibilnim nosivim sustavom, može se pronaći samo za centar grada (nije odvojeno zabilježeno za svaku općinsku podupravu). Stoga se smatra da je raspodjela građevina izvedenih u skladu sa seizmičkom normom ili dvojnim nosivim sustavom jednolika po gradu.

Razlika između "slabo" i "dobro" u DBELA-i je uspostavljena na način da se razlikuju građevine koje nisu i koje jesu izvedene u skladu s relevantnom seizmičkom normom. Treba istaknuti da ovaj način klasifikacije konstrukcija ne definira zajedno očekivanu razinu štete za pojedinu kategoriju građevina; ono jednostavno označava kvalitetu projektiranja i izvedbe konstrukcije kao i sukladnost s relevantnom seizmičkom normom. "Normalno" i "upušteno" su dvije riječi koje označavaju vrstu grede u armiranobetonskim građevinama, gdje termin "normalno" definira gredu visine 40-60 cm ubetoniranu u ploču uobičajene debljine od 10-15 cm. Termin "upuštena" definira gredu ubetoniranu u ploču punom visinom, uobičajena visina grede i ploče je 30-37 cm. "Dvojni" sustav definira armiranobetonsku konstrukciju s vertikalnim zidovima, dok "okvir" definira armiranobetonski okvir bez vertikalnih zidova. Daljnje pojedinosti oko navedenih klasifikacija mogu se pronaći u Bal i dr. [16]. Broj građevina za svaku podupravu dan je u tablici 2. Potrebno je istaknuti da postotak konstrukcija s "normalnom"

Tablica 2. Broj armiranobetonskih građevina u 12 poduprava, korištenih pri procjeni gubitaka

| Poduprava           | Ukupan broj<br>AB građevina | Okvir - u skladu s<br>normom (GFN i GFE) | Dvojni sustav - u skladu s<br>normom (GDN i GDE) | Okvir - nije u skladu s<br>normom (PFN i PFE) | Dvojni sustav - nije u skladu<br>s normom (GDN i GDE) |
|---------------------|-----------------------------|------------------------------------------|--------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|
| Hersan              | 504                         | 66                                       | 10                                               | 403                                           | 25                                                    |
| Saray               | 313                         | 41                                       | 6                                                | 250                                           | 16                                                    |
| 8 Agustos           | 742                         | 96                                       | 15                                               | 594                                           | 37                                                    |
| Inonu               | 353                         | 46                                       | 7                                                | 282                                           | 18                                                    |
| Devrim              | 219                         | 28                                       | 4                                                | 175                                           | 11                                                    |
| Mustakbaba          | 460                         | 60                                       | 9                                                | 368                                           | 23                                                    |
| Zeydan              | 272                         | 35                                       | 5                                                | 218                                           | 14                                                    |
| Yukselis            | 358                         | 47                                       | 7                                                | 286                                           | 18                                                    |
| Tas                 | 456                         | 59                                       | 9                                                | 365                                           | 23                                                    |
| Ataturk             | 488                         | 63                                       | 10                                               | 391                                           | 24                                                    |
| Gazibey             | 467                         | 61                                       | 9                                                | 374                                           | 23                                                    |
| Husrevpasa          | 554                         | 72                                       | 11                                               | 443                                           | 28                                                    |
| DENI: Door-Erame-No | rmal (elabi_okvir_norm:     | alpo) DEE: Door-Erame-Embed              | ded (slabi-okvir-ugrađeno), GDN: Good-           | -<br>Dual-Normal (slabi-dvoini-normalno)      | GDE: Good-Dual-Embedded (slabi-                       |

PFN: Poor-Frame-Normal (slabi-okvir-normalno), PFE: Poor-Frame-Embedded (slabi-okvir-ugrađeno), GDN: Good-Dual-Normal (slabi-dvojni-normalno), GDE: Good-Dual-Embedded (slabidvojni-ugrađeno), GFN: Good-Frame-Normal (dobro-okvir-normalno), GFE: Good-Frame-Embedded (dobro-okvir-ugrađeno)

| Period<br>Poduprava | Prije 1970. | 1971.–1980. | 1981.–1990. | 1991.–2000. | 2001.–2010. |
|---------------------|-------------|-------------|-------------|-------------|-------------|
| Hersan              | 3 %         | 11 %        | 35 %        | 36 %        | 15 %        |
| Saray               | 18 %        | 23 %        | 12 %        | 32 %        | 15 %        |
| Sekiz Agustos       | 11%         | 22 %        | 33 %        | 19 %        | 15 %        |
| Inonu               | 17 %        | 28 %        | 16 %        | 24 %        | 15 %        |
| Devrim              | 20 %        | 32 %        | 22 %        | 11%         | 15 %        |
| Mustakbaba          | 12 %        | 25 %        | 35 %        | 13 %        | 15 %        |
| Zeydan              | 14 %        | 31 %        | 22 %        | 18 %        | 15 %        |
| Yukselis            | 10 %        | 22 %        | 38 %        | 15 %        | 15 %        |
| Tas                 | 15 %        | 21%         | 29 %        | 20 %        | 15 %        |
| Ataturk             | 13 %        | 22 %        | 24 %        | 26 %        | 15 %        |
| Gazibey             | 10 %        | 24 %        | 31 %        | 20 %        | 15 %        |
| Husrevpasa          | 3 %         | 5 %         | 39 %        | 38 %        | 15 %        |
| Srednja vrijednost  | 11 %        | 21 %        | 30 %        | 23 %        | 15 %        |

#### Tablica 3. Udio u postotcima armiranobetonskih građevina u Bitlisu ovisno o datumu izgradnje [16, 19]

Tablica 4. Postotak broja katova za armiranobetonske građevinu za svaku podupravu

| Broj katova<br>Poduprava | 1    | 2    | 3    | 4    | 5    | 6    | 7   | 8   | 9   |
|--------------------------|------|------|------|------|------|------|-----|-----|-----|
| Hersan                   | 41%  | 23 % | 12 % | 10 % | 5 %  | 5 %  | 3 % | 1 % | 0 % |
| Saray                    | 35 % | 32 % | 11%  | 8 %  | 4 %  | 6 %  | 2 % | 2 % | 0 % |
| 8 Agustos                | 31 % | 19 % | 15 % | 13 % | 10 % | 4 %  | 5 % | 2 % | 1 % |
| Inonu                    | 27 % | 17 % | 14 % | 12 % | 11%  | 9 %  | 5 % | 3 % | 2 % |
| Devrim                   | 21%  | 18 % | 16 % | 9 %  | 12 % | 10 % | 7 % | 4 % | 3 % |
| Mustakbaba               | 37 % | 23 % | 18 % | 9 %  | 7 %  | 3 %  | 2 % | 1 % | 0 % |
| Zeydan                   | 36 % | 21%  | 17 % | 9 %  | 8 %  | 4 %  | 2 % | 2 % | 1 % |
| Yukselis                 | 33 % | 25 % | 13 % | 12 % | 7 %  | 5 %  | 4 % | 1 % | 0 % |
| Tas                      | 29 % | 17 % | 14 % | 11%  | 9 %  | 7 %  | 6 % | 4 % | 3 % |
| Ataturk                  | 26 % | 16 % | 15 % | 12 % | 9 %  | 8 %  | 5 % | 5 % | 4 % |
| Gazibey                  | 23 % | 20 % | 14 % | 15 % | 12 % | 10 % | 3 % | 2 % | 1 % |
| Husrevpasa               | 18 % | 17 % | 11%  | 13 % | 14 % | 8 %  | 8 % | 6 % | 5 % |
| Srednja vrijednost       | 30 % | 20 % | 14 % | 11 % | 9 %  | 6 %  | 4 % | 3 % | 2 % |

i "upuštenom" gredom nije poznat, pri čemu su korišteni podaci iz regije Marmara [16] i istočne Turske [17]. Prema navedenom, za oko 25 % građevina se pretpostavlja da su izvedene s upuštenim gredama.

U tablici 3. su prikazani datumi izvedbe armiranobetonskih građevina za svaku geografsku jedinicu Bitlisa. Godina izvedbe, ili jednostavno period izvedbe, važan je za DBELA kalkulacije jer se kvaliteta armaturnog čelika mijenjala s vremenom [16], što primarno utječe na vrijednosti pomaka pri proračunu graničnih stanja. Kako je spomenuto, ukupan broj građevina izgrađenih između 2001. i 2010. godine se smatra cijelim brojem za cijeli grad te je ravnomjerno raspoređen po svim podupravama. To je razlog zašto postotak građevina kod svih poduprava u stupcu 2001.-2010. u tablici 3. iznosi 15 %.

Drugi važan parametar za izračun gubitaka prema DBELA metodi je broj katova. On definira pretpostavljeni oblik pomak konstrukcije kao i kapacitet pomaka pri popuštanju i graničnom stanju konstrukcije. Korištenjem dostupnih izvora [16, 18], broj katova za sve armiranobetonske građevine u Bitlisu je prikazan u tablici 4.

## 4. Procjena gubitaka uslijed djelovanja potresa

Termin procjena gubitaka definira pristup na temelju kojeg se izvodi procjena ukupne količine i prostorne distribucije konstrukcijskih, financijskih i socijalnih gubitaka, bilo u slučaju nakon potresa (npr. primjenom ostvarenog scenarija potresa), ili probabilističkim pristupom primjenom postojećih zapisa potresa zabilježenih u dotičnoj regiji. Raspoložive metode procjene gubitaka mogu biti u potpunosti empirijske, temeljene na krivuljama vjerojatnosti oštećenja ili analitičke. Primjena analitičkih metoda zahtijeva visoki sadržaj i razlučivost podataka kako bi se adekvatno opisao odgovor građevnog fonda u razmatranju. Detaljnije o primjeni analitičkih metoda može se pronaći u [19]. Metode procjene gubitaka mogu izraziti i izravne ekonomske i socijalne gubitke. Neizravni gubici su gubici prouzročeni kolateralnim štetama te prekidom gospodarskih aktivnost koje je teško dovesti u korelaciju sa složenim posljedicama potresnog događaja. Izračun neizravnih gubitaka zahtijeva jasniji uvid u ekonomske učinke potresa, koji se mogu očitovati kroz duže razdoblje [15].

Procjena gubitaka nastalih tijekom djelovanja potresa zahtijeva predviđanje o broju konstrukcija pojedine klase koje pripadaju određenom razredu oštećenja za određeni potresni zahtjev (eng. *seismic demand*).

Ta predviđanja trebaju se provoditi primjenom metoda koje se temelje na točnom i djelotvornom proračunu. Karte rizika ili oštećenja mogu se izraditi na državnoj razini nakon nekog aktivirajućeg događaja, što se razlikuje od načina na koji se izrađuju karte kao što su to npr. karte opasnosti.

Potresno djelovanje treba biti opisano parametrima kojima je ostvarena dobra korelacija s oštećenjem i kojima je uzet u obzir odnos između frekventnog sastava potresa i osnovnog perioda vibriranja konstrukcije; kao što su nedavno predloženi pristupi temeljeni na spektru pomaka (eng. *displacement response spectra*) [15, 21].

U ovom istraživanju je primijenjena analitička metoda procjene gubitaka, koja je prethodno korištena i za područje Istanbula [3, 15 i 21]. Metoda se temelji na principima mehanike konstrukcija, a potresni odziv konstrukcije se primjenjuje pri procjeni potresnih mogućih oštećenja pojedinih klasa konstrukcija. U ovom se proračunu osnovni period vibracija svake građevine unutar nasumične stanovništva određuje pomoću pojednostavnjene jednadžbe ovisno o visini i tipu građevine, a kapacitet pomaka pri različitim graničnim stanjima određuje se primjenom jednadžbi koje su u funkciji nasumično simuliranih geometrijskih i materijalnih karakteristika. Kapacitet pomaka svake građevine se tada uspoređuje sa zahtijevanim pomakom dobivenim na temelju jako prigušenog (eng. over-damped) spektra pomaka, primjenom osnovnog perioda vibracije. Na taj se način može procijeniti udio konstrukcija koje se nalaze unutar diskretnog razreda oštećenja (slika 4.).

Na primjeru iz slike 4., do prekoračenja kapaciteta dolazi samo u prvom graničnom stanju, pa se stoga građevina ubraja u drugo stanje oštećenja. Prema primijenjenoj klasifikaciji postoje četiri razine štete (razina bez oštećenja ili neznatnog oštećenja, zatim umjereno, značajno i potpuno oštećenje) kako su to definirali Crowley i dr. [21]. Opis primijenjene metodologije, prikazane korak po korak, može se pronaći kod Bala i dr. [15].



Slika 4. Usporedba između kapaciteta pomaka i zahtjeva za promatrana granična stanja [15]

DBELA metoda se temelji na procjeni pomaka pri popuštanju i graničnom stanju ekvivalentnog elastičnog, jako prigušenog sustava. Pomak pri popuštanju i graničnom stanju pojedinog tipa konstrukcije se određuje na temelju konstrukcijskih parametara (npr. visina presjeka stupa, deformacija armature pri popuštanju i slomu, duljina grede itd.). Nakon toga se uspoređuje kapacitet pomaka pri popuštanju i graničnom stanju sa zahtijevanim pomakom.

Priestley i Kowalsky [22] su dokazali kako zakrivljenost armiranobetonskog presjeka pri pojavi popuštanja,  $\phi_{v'}$  ne ovisi o čvrstoći, a time ni o sadržaju armature, već isključivo o deformaciji armaturnog čelika i geometriji poprečnog presjeka:

$$\varphi_{\gamma} = 2.14 \frac{\varepsilon_{\gamma}}{h_c}$$
 za stupove (1)

$$\varphi_y = 1.7 \frac{\varepsilon_y}{h_b}$$
 za zgrade (2)

gdje je

 $h_{b}$  - visina grede

h\_ - visina stupa

ε, - deformacija armaturnog čelika pri pojavi popuštanja.

Prednost ovog pristupa se očituje u izravnom određivanju kapaciteta pomaka armiranobetonskih konstrukcija poznavanjem samo materijalnih i geometrijskih svojstava, bez potrebe za poznavanjem čvrstoća. Ovo je od primarne važnosti za provedbu ocjene, a posebno za analize procjene gubitaka, budući da je teško dobiti pouzdane statističke podatke za pojedine parametre (npr. čvrstoća betona, sadržaj armaturnog čelika u stupovima i gredama) koji opisuju nosivost konstrukcija izloženih potresu.

Prijelaz sa zakrivljenosti na tangentnu rotaciju pri popuštanju,  $\theta_{t,r}$  ostvaruje se integriranjem krivulje zakrivljenosti pri pojavi

#### Gradevinar 7/2017

popuštanja po visini stupa, kako je to prikazano izrazima (1), (2) i (3). Nakon integracije,  $\theta_{ty}$  se množi empirijskim faktorom (1,35 u ovom primjeru), prema Priestley [23], kako bi se uračunao doprinos posmičnih deformacija i deformacije čvora.

$$\theta_{ty} = \varphi_y \frac{h_s}{2} = 2.14 \frac{\varepsilon_y}{h_c} \frac{h_s}{2} = 1.07 \varepsilon_y \frac{h_s}{h_c}$$
(3)

$$\theta_{y} = 1.35\theta_{ty} = 1.44\varepsilon_{y} \frac{h_{s}}{h_{c}}$$



Slika 5. Prikaz prijelaza iz MDOF u SDOF za svaku građevinu i granična stanja pripadajućeg SDOF sustava

Tehnikom moment-površina dolazimo do pomaka vrha stupa pri pojavi popuštanja,  $\Delta_v$ :

(4)

$$\Delta_{y} = \theta_{y} \frac{2}{3} h_{s} = 0.96 \varepsilon_{y} \frac{h_{s}^{2}}{h_{c}}$$
(5)

Plastičnu zakrivljenost,  $\phi_{p'}$ , određujemo kao razliku vrijednosti zakrivljenosti pri graničnom stanju,  $\phi_{is'}$  i zakrivljenosti pri pojavi popuštanja, kako je to prikazano izrazom (6):

$$\varphi_{\rho} = \varphi_{LSI} - \varphi_{\gamma} = \left(\varepsilon_{C(LSI)} + \varepsilon_{s(LSI)}\right) \frac{1}{h_{c}} - 2.14 \frac{\varepsilon_{\gamma}}{h_{c}} = \left(\varepsilon_{C(LSI)} + \varepsilon_{s(LSI)} - 2.14\varepsilon_{\gamma}\right) / h_{c}$$
(6)

Zakrivljenost pri graničnom stanju se aproksimira zbrojem deformacija betona i armaturnog čelika sa suprotnih rubova poprečnog presjeka,  $\varepsilon_{C,LSI}$  i  $\varepsilon_{S,LSI'}$  podijeljenom s ukupnom visinom presjeka. Plastična zakrivljenost se množi s duljinom plastičnog zgloba, I<sub>p</sub>, pretpostavljenom u iznosu polovine visine presjeka, prema Paulay i Priestley [24], pri čemu se plastična rotacija određuje kao:

$$\theta_{p} = \varphi_{p}I_{p} = \varphi_{p}0.5h_{c} = \left(\varepsilon_{C(LSi)} + \varepsilon_{S(LSi)} - 2.14\varepsilon_{y}\right) 0.5$$
(7)

Duljina plastičnog zgloba ne predstavlja ukupni sadržaj plastičnosti elementa, ali se smatra reprezentativnom duljinom u matematičkom smislu. Postoji više razmatranja duljine plastičnih zglobova koje predlaže Priestley i dr. [25]. Plastični pomak vrha konzole se određuje množenjem plastične rotacije i ukupne visine stupova:

$$\Delta_{\rho} = \theta_{\rho} h_{\rm s} = \left(\varepsilon_{\mathcal{C}(LSi)} + \varepsilon_{\rm S(LSi)} - 2.14\varepsilon_{\rm y}\right) 0.5 h_{\rm s} \tag{8}$$

Ukupni pomak pri graničnom stanju je prikazan izrazom (9), a dobiven je zbrajanjem pomaka pri popuštanju, iz izraza (5), s plastičnim pomakom:

$$\Delta_{LSi} = \Delta_{y} + \Delta_{p} = 0.96\varepsilon_{y} \frac{h_{s}^{2}}{h_{c}} + \left(\varepsilon_{C(LSi)} + \varepsilon_{S(LSi)} - 2.14\varepsilon_{y}\right) 0.5h_{s}$$
(9)

Isti principi mogu se primijeniti pri određivanju kapaciteta pomaka konstrukcija. Međutim, ovdje određujemo kapacitet konstrukcije, suprotno od kapaciteta pojedinih elemenata. Zahtijevani pomak konstrukcije se predviđa na temelju spektralnog pomaka, koji daje odziv SDOF sustava za određeni zapis potresa. Kako bi se usporedio zahtijevani pomak s kapacitetom, potrebno je prijeći sa sustava s više stupnjeva slobode (MDOF) na sustav s jednim stupnjem slobode (SDOF), kao što je prikazano na slikama 4. i 5. Do sada je objašnjena procjena kapaciteta generiranih građevina, koja predstavlja konstrukcijska svojstva građevnog fonda. Za generiranje građevina koje će biti ispitivane unutar analize procjene gubitaka primijenjena je Monte Carlo simulacija. Da bi se to napravilo, korišteni su podaci o građevnom fondu [16-18], a statistička svojstva tih podataka (npr. vrsta distribucije koju podaci slijede, medijan, standardna devijacija itd.) korištena su kako bi se generirala nasumična svojstva građevina. Ta su svojstva tada primijenjena pri određivanju kapaciteta pomaka.

Kao što je spomenuto, potresni zahtjev je određen na temelju šest determinističkih scenarija potresa. Korišteni potresni scenariji predstavljaju stvarne događaje koji iz prošlosti. Prema tome, prvi potresni scenarij predstavlja potres Malazgrt magnitude 6,2 koji se dogodio 1903. godine na udaljenosti 87 km od Bitlis-a. Drugi potresni scenarij predstavlja potres koji se dogodio 1915. godine na udaljenosti 57 km od grada, magnitude 5,7. Treći potresni scenarij predstavlja potres koji se dogodio 1966. godine na udaljenosti 99 km, magnitude 6,0. Četvrti potresni scenarij predstavlja potres iz 1705. godine, magnitude 6,7. Peti potresni scenarij predstavlja Bitlis-Nemrut potres koji se dogodio 3. svibnja 1881. godine, magnitude 6,7. Šesti potresni scenarij predstavlja nedavni Van potres magnitude 7,2. Gradsko središte Bitlisa, kao osnova procjene gubitaka, ima tip tla B prema NEHRP klasifikaciji tla [26]. Spektar za svaku od poduprava je definiran na temelju analitičkih izraza prema Akkaru i Bommeru [27], ovisno o prigušenju sustava. Korišteni GMPE (eng. Ground Motion Prediction Equations) izrazi nisu ažurirani, ali izravno definiraju spektar pomaka. Izrazi koji definiraju spektar ubrzanja su ažurirani, i također mogu biti primijenjeni, a dobiveni spektar ubrzanja može se prevesti u spektar pomaka. Primjena spektralnog pomaka je točnija u smislu pripadajućih nesigurnosti, a primjena spektra ubrzanja i pretpostavka da je nesigurnost spektra ubrzanja jednaka onom spektru pomaka bila bi pogrešna [28]. Pri definiranju spektra pomaka korištena je nesigurnost unutar događaja, za svaku simulaciju. Simulirano je 100 polja gibanja tla, gdje je varijabilnost unutar svakog događaja uzeta u obzir preko prostorne korelacije [29] raznih geografskih jedinica. Treba imati na umu da su dostupni modeli prostorne korelacije kalibrirani samo za zaostala ubrzanja, a ne za zaostale pomake. No, autori su bili suočeni s odabirom između primjene spektra pomaka i primjene točnih nesigurnosti i korištenja spektra ubrzanja i primjene kalibriranih modela prostorne korelacije. Autori su odabrali drugu opciju, korištenje spektra ubrzanja, budući da se obje opcije nisu mogle primijeniti istovremeno.

Slijedeći navedene korake, napravljena je korelacijska matrica koja uzima u obzir udaljenosti između središta geografskih jedinica (npr. poduprava). Na kraju, generirana je matrica utjecaja preko korelacijske matrice i *Latin hypercube* metode, gdje je epsilon procijenjen kod svake simulacije za svaku geografsku jedinicu.

Šteta je određena primjenom odnosa srednje štete (eng. *mean-damage-ratio* - MDR), indikatora koji povezuje razne vrijednosti štete u jedan parametar. MDR je pogodan parametar koji je zapravo težinski prosjek odnosa troškova popravka i/ili ojačanja (ili zamjene, za srušene građevine) građevina prema troškovima njihove ponovne izgradnje. Na temelju stvarnih podataka iz

cijele Turske, Bal i dr. [17] sugerira MRD od 16 % za neznatno oštećene, 31 % za umjereno oštećene, 105 % za prilično oštećene te 104 % za srušene građevine. Napominje se da su u radu [17] navedene karakteristike građevina sjeverozapadne Turske, ali su MDR podaci tog izvješća prikupljeni i iz ostalih dijelova zemlje. Ovi su odnosi pomnoženi s postocima oštećenih građevina po podupravama i težinskim prosjekom izračunanim za svaku podupravu. Skupni MDR je određen za cijelu regiju (uzimajući u obzir sve klase građevina) tj. definiran za svaki od 100 simuliranih polja gibanja tla i za svaku razinu prostorne razlučivosti, nakon čega je određen srednji skupni MDR. Nakon toga se MDR može pomnožiti s prosječnim troškovima rekonstrukcije i predstaviti kao ukupni izravni gubitak. Vrijednost MDR-a se određuje pomoću jednadžbe 10:

$$MDR = SSR_{ISIJ}C_{ISIJ}$$
(10)

gdje je R<sub>LSi,j</sub> je odnos broja građevina s brojem građevina klase "i" i graničnog stanja "j", a C<sub>LSi,j</sub> je odnos troškova popravka i/ ili ojačanja građevina klase "i" koje su dosegle štetu graničnog

Tablica 5. Distribucija ozljeda za određenu klasu građevina, prema Spence [28]

| Šteta                                                                     |                        |                     | Stanje potpu       | une štete [%]  |                |                |
|---------------------------------------------------------------------------|------------------------|---------------------|--------------------|----------------|----------------|----------------|
| Vrsta građevine                                                           | U                      | l <sub>1</sub>      | I <sub>2</sub>     | I <sub>3</sub> | I <sub>4</sub> | I <sub>5</sub> |
| Zidana (1 etaža)                                                          | 23,6                   | 50,0                | 12,0               | 8,0            | 0,4            | 6,0            |
| Zidana (2-3 etaže)                                                        | 16,5                   | 50,0                | 15,0               | 10,0           | 0,5            | 8,0            |
| Zidana (≥ 4 etaže)                                                        | 9,4                    | 50,0                | 18,0               | 12,0           | 0,6            | 10,0           |
| Armiranobetonska (1 etaža)                                                | 32,9                   | 30,0                | 19,0               | 3,0            | 0,2            | 15,0           |
| Armiranobetonska (2-3 etaže)                                              | 20,8                   | 30,0                | 23,0               | 4,0            | 0,2            | 22,0           |
| Armiranobetonska (≥ 4 etaže)                                              | 9,7                    | 30,0                | 27,0               | 5,0            | 0,3            | 28,0           |
| U. = neozlijeđeni; I. = neznatne ozljede; I. = umjerene ozljede; I. = ozl | oiline ozliede: I. = I | kritične ozliede: I | _ = smrtni slučaje | vi             |                |                |

Tablica 6. Distribucija štete (broj građevina) prema scenariju potresa # 1 (M\_ = 6,7, R = 87 km)

| Šteta<br>Poduprava | Urušeno | Značajno oštećeno | Umjereno oštećeno | Neznatno oštećeno | Bez štete | Ukupno   |
|--------------------|---------|-------------------|-------------------|-------------------|-----------|----------|
| Hersan             | 0       | 0                 | 2                 | 2                 | 500       | 504      |
| Saray              | 0       | 0                 | 2                 | 2                 | 309       | 313      |
| 8 Agustos          | 0       | 0                 | 2                 | 2                 | 738       | 742      |
| Inonu              | 0       | 0                 | 2                 | 2                 | 349       | 353      |
| Devrim             | 0       | 0                 | 2                 | 2                 | 215       | 219      |
| Mustakbaba         | 0       | 0                 | 2                 | 3                 | 455       | 460      |
| Zeydan             | 0       | 0                 | 1                 | 1                 | 270       | 272      |
| Yukselis           | 1       | 1                 | 2                 | 1                 | 353       | 358      |
| Tas                | 0       | 1                 | 1                 | 1                 | 453       | 456      |
| Ataturk            | 0       | 1                 | 1                 | 2                 | 484       | 488      |
| Gazibey            | 0       | 1                 | 2                 | 2                 | 462       | 467      |
| Husrevpasa         | 0       | 0                 | 1                 | 3                 | 550       | 554      |
| Ukupno             | 1       | 4                 | 20                | 23                | 5138      | 5186     |
| Postotak           | 0,02 %  | 0,08 %            | 0,39 %            | 0,44 %            | 99,07 %   | 100,00 % |

stanja "j". Na primjer, odnos R<sub>LSI,j</sub> se može interpretirati kao "odnos građevina s armiranobetonskim okvirom, izgrađenih između 1979. i 1990. godine s 3 do 5 katova, koje su dosegnule štetu pri graničnom stanju 1 u analizi". Važno je imati na umu da ovaj odnos predstavlja odnos ukupnog broja građevina u fondu, a zbroj R odnosa bi trebao biti 1. C<sub>LSI,j</sub> je odnos troškova vraćanja građevine u izvorno stanje i troškova ponovne izgradnje te iste građevine.

Broj smrtnih slučajeva je određen pomoću modela koje je predložio Spence [28], a detalji su dani u tablici 5. Očekivani odnosi ozljeda su uprosječeni uzimajući u obzir klasu građevina i njihovu distribuciju u svakoj podupravi. Broj smrtnih slučajeva je određen za pojavu potresa tijekom noći i dana (oko 67 % je više stanovništva u građevinama tijekom noći). Grad ima ukupno 67.000 stanovnika, raspodijeljenih u 12 poduprava. Na temelju statističkih podataka iz [16], određeno je da se približno 4,33 osobe nalaze na svakom katu građevine.

Rezultati prikazani u smislu distribucije štete dani su u tablicama 6. do 11. Treba napomenuti da postoji velika varijabilnost prikazanih rezultata, kao posljedica simulacije nekoliko polja gibanja tla. Također je važno napomenuti da prikazani rezultati predstavljaju medijan vrijednosti, te da im je pridružena velika nesigurnost. Iznimna šteta odgovara stanju štete gdje se konstrukcija ne može popraviti. Umjerena šteta znači da

| Tablica 7. Distribucija štete (broj građevina | ) prema scenariju potresa # 2 ( | M <sub>w</sub> = 5,7, R = 58 km) |
|-----------------------------------------------|---------------------------------|----------------------------------|
|-----------------------------------------------|---------------------------------|----------------------------------|

| Šteta<br>Poduprava | Urušeno | Značajno oštećeno | Umjereno oštećeno | Neznatno oštećeno | Bez štete | Ukupno   |
|--------------------|---------|-------------------|-------------------|-------------------|-----------|----------|
| Hersan             | 0       | 0                 | 1                 | 3                 | 500       | 504      |
| Saray              | 0       | 0                 | 1                 | 2                 | 310       | 313      |
| 8 Agustos          | 0       | 0                 | 1                 | 2                 | 739       | 742      |
| Inonu              | 0       | 0                 | 2                 | 1                 | 350       | 353      |
| Devrim             | 0       | 0                 | 2                 | 2                 | 215       | 219      |
| Mustakbaba         | 0       | 0                 | 2                 | 3                 | 455       | 460      |
| Zeydan             | 0       | 0                 | 2                 | 3                 | 267       | 272      |
| Yukselis           | 0       | 0                 | 2                 | 2                 | 354       | 358      |
| Tas                | 1       | 1                 | 1                 | 2                 | 451       | 456      |
| Ataturk            | 0       | 0                 | 2                 | 2                 | 484       | 488      |
| Gazibey            | 0       | 0                 | 1                 | 2                 | 464       | 467      |
| Husrevpasa         | 0       | 0                 | 2                 | 3                 | 549       | 554      |
| Ukupno             | 1       | 1                 | 19                | 27                | 5138      | 5186     |
| Postotak           | 0,02 %  | 0,02 %            | 0,37 %            | 0,52 %            | 99,07 %   | 100,00 % |

Tablica 8. Distribucija štete (broj građevina) prema scenariju potresa # 3 (M<sub>w</sub> = 6,0, R = 99 km)

| Šteta<br>Poduprava | Urušeno | Značajno oštećeno | Umjereno oštećeno | Neznatno oštećeno | Bez štete | Ukupno   |
|--------------------|---------|-------------------|-------------------|-------------------|-----------|----------|
| Hersan             | 1       | 1                 | 1                 | 4                 | 497       | 504      |
| Saray              | 0       | 0                 | 1                 | 3                 | 309       | 313      |
| 8 Agustos          | 0       | 0                 | 1                 | 6                 | 735       | 742      |
| Inonu              | 0       | 1                 | 2                 | 4                 | 346       | 353      |
| Devrim             | 1       | 1                 | 2                 | 4                 | 211       | 219      |
| Mustakbaba         | 0       | 1                 | 2                 | 4                 | 453       | 460      |
| Zeydan             | 0       | 1                 | 2                 | 4                 | 265       | 272      |
| Yukselis           | 1       | 1                 | 1                 | 4                 | 351       | 358      |
| Tas                | 1       | 1                 | 1                 | 5                 | 448       | 456      |
| Ataturk            | 1       | 1                 | 2                 | 5                 | 479       | 488      |
| Gazibey            | 1       | 1                 | 1                 | 4                 | 460       | 467      |
| Husrevpasa         | 0       | 1                 | 2                 | 6                 | 545       | 554      |
| Ukupno             | 6       | 10                | 18                | 53                | 5099      | 5186     |
| Postotak           | 0,12 %  | 0,19 %            | 0,35 %            | 1,02 %            | 98,32 %   | 100,00 % |

| Šteta<br>Poduprava | Urušeno | Značajno oštećeno | Umjereno oštećeno | Neznatno oštećeno | Bez štete | Ukupno   |
|--------------------|---------|-------------------|-------------------|-------------------|-----------|----------|
| Hersan             | 31      | 22                | 62                | 79                | 310       | 504      |
| Saray              | 20      | 15                | 43                | 50                | 185       | 313      |
| 8 Agustos          | 54      | 39                | 106               | 121               | 422       | 742      |
| Inonu              | 30      | 22                | 57                | 59                | 185       | 353      |
| Devrim             | 22      | 14                | 39                | 38                | 106       | 219      |
| Mustakbaba         | 32      | 23                | 61                | 74                | 270       | 460      |
| Zeydan             | 21      | 14                | 38                | 46                | 153       | 272      |
| Yukselis           | 25      | 18                | 52                | 59                | 204       | 358      |
| Tas                | 37      | 27                | 72                | 76                | 244       | 456      |
| Ataturk            | 38      | 28                | 78                | 81                | 263       | 488      |
| Gazibey            | 34      | 26                | 75                | 81                | 251       | 467      |
| Husrevpasa         | 29      | 28                | 85                | 103               | 309       | 554      |
| Ukupno             | 373     | 276               | 768               | 867               | 2902      | 5186     |
| Postotak           | 7,19 %  | 5,32 %            | 14,81 %           | 16,72 %           | 55,96 %   | 100,00 % |

## Tablica 9. Distribucija štete (broj građevina) prema scenariju potresa # 4 (M<sub>w</sub> = 6,7, R = 2 km)

Tablica 10. Distribucija štete (broj građevina) prema scenariju potresa # 5 (M, = 6,6, R = 15 km)

| Šteta<br>Poduprava | Urušeno | Značajno oštećeno | Umjereno oštećeno | Neznatno oštećeno | Bez štete | Ukupno   |
|--------------------|---------|-------------------|-------------------|-------------------|-----------|----------|
| Hersan             | 17      | 17                | 53                | 76                | 341       | 504      |
| Saray              | 12      | 11                | 35                | 50                | 205       | 313      |
| 8 Agustos          | 27      | 30                | 96                | 119               | 470       | 742      |
| Inonu              | 14      | 13                | 46                | 60                | 220       | 353      |
| Devrim             | 10      | 10                | 31                | 39                | 129       | 219      |
| Mustakbaba         | 14      | 16                | 50                | 73                | 307       | 460      |
| Zeydan             | 8       | 10                | 30                | 42                | 182       | 272      |
| Yukselis           | 9       | 11                | 36                | 56                | 246       | 358      |
| Tas                | 15      | 15                | 55                | 76                | 295       | 456      |
| Ataturk            | 15      | 15                | 55                | 80                | 323       | 488      |
| Gazibey            | 13      | 14                | 54                | 76                | 310       | 467      |
| Husrevpasa         | 12      | 15                | 53                | 87                | 387       | 554      |
| Ukupno             | 166     | 177               | 594               | 834               | 3415      | 5186     |
| Postotak           | 3,20 %  | 3,41 %            | 11,45 %           | 16,08 %           | 65,85 %   | 100,00 % |

konstrukcija nema više nosivost kao prije potresa, ali se može popraviti i ponovo koristiti. Neznatna šteta pokazuje da nema značajne štete na glavnom nosivom sustavu te da je šteta uglavnom koncentrirana na sekundarnim elementima poput zidova ispune.

U tablici 12. prikazani su ukupni MDR odnosi kao i očekivana smrtnost. Ukupna izgrađena površina stambenih građevina u Bitlisu pokriva oko 2,1 milijuna m<sup>2</sup>. Troškovi rekonstrukcije su preuzeti od turskog Ministarstva okoliša i urbanizacije za 2015. godinu u visini od 650 TL/m<sup>2</sup> ili 200 €/m<sup>2</sup>. Troškovi rekonstrukcije su procijenjeni na približno 414 milijuna eura za sve stambene građevine Bitlisa. Na osnovi procjena gubitaka je ustanovljeno da se niti jedna građevina neće urušiti osim pri potresnom scenariju 4 i 5. Ta su dva potresna scenarija gdje se potresi pojavljuju vrlo blizu gradskom središtu. Ako bi se ti scenariji ostvarili, u ovom radu je izračunano da bi se od 4,3 do 9,6 % postojećih armiranobetonskih građevina urušilo, od 4 do 7 % imalo značajnu štetu, od 15 do 20 % pretrpjelo bi umjerenu štetu, a od 21 do 22 % imalo bi neznatno oštećenje (tablica 12.).

U ovom istraživanju potresni scenarij 6 predstavlja Van potres iz 2011. godine. Ukupno su 3 osobe poginule u Bitlisu tijekom tog potresa, a 4 do 6 građevina je značajno oštećeno (tj. blizu urušavanja). Čini se da ovdje provedene procjene precjenjuju

| Šteta<br>Poduprava | Urušeno | Značajno oštećeno | Umjereno oštećeno | Neznatno oštećeno | Bez štete | Ukupno   |
|--------------------|---------|-------------------|-------------------|-------------------|-----------|----------|
| Hersan             | 0       | 1                 | 3                 | 4                 | 496       | 504      |
| Saray              | 0       | 1                 | 3                 | 2                 | 307       | 313      |
| 8 Agustos          | 0       | 1                 | 3                 | 7                 | 731       | 742      |
| Inonu              | 0       | 1                 | 3                 | 4                 | 345       | 353      |
| Devrim             | 0       | 1                 | 3                 | 4                 | 211       | 219      |
| Mustakbaba         | 1       | 1                 | 1                 | 4                 | 453       | 460      |
| Zeydan             | 0       | 1                 | 3                 | 3                 | 265       | 272      |
| Yukselis           | 0       | 1                 | 3                 | 3                 | 351       | 358      |
| Tas                | 0       | 1                 | 1                 | 5                 | 449       | 456      |
| Ataturk            | 0       | 1                 | 3                 | 7                 | 477       | 488      |
| Gazibey            | 0       | 0                 | 1                 | 6                 | 460       | 467      |
| Husrevpasa         | 1       | 1                 | 2                 | 6                 | 544       | 554      |
| Ukupno             | 2       | 11                | 21                | 55                | 5089      | 5186     |
| Postotak           | 0,05 %  | 0,21%             | 0,54 %            | 1,06 %            | 98,13 %   | 100,00 % |

## Tablica 11. Distribucija štete (broj građevina) prema scenariju potresa # 6 (M<sub>w</sub> = 7,2, R = 95 km)

Tablica 12. Rezultati procjene gubitaka za Bitlis, prema MDR i smrtnosti za 6 potresnih scenarija

| Scenarij                                                     | M   | <b>R</b><br>[km] | Gubitak života<br>(dnevni događaj) | Gubitak života<br>(noćni događaj) | MDR – srednja vrijednost<br>[%] | <b>MDR - CoV</b><br>[%] | lzravni ekonomski gubici<br>[m€] |  |  |
|--------------------------------------------------------------|-----|------------------|------------------------------------|-----------------------------------|---------------------------------|-------------------------|----------------------------------|--|--|
| 1                                                            | 6,7 | 87               | 4                                  | 5                                 | 0,3                             | 82                      | 1,2                              |  |  |
| 2                                                            | 5,7 | 58               | ζ <sub>4</sub>                     | 5                                 | 0,2                             | 66                      | 0,8                              |  |  |
| 3                                                            | 6,0 | 99               | 24                                 | 33                                | 0,6                             | 88                      | 2,5                              |  |  |
| 4                                                            | 6,7 | 2                | 1519                               | 1985                              | 20,3                            | 91                      | 84,0                             |  |  |
| 5                                                            | 6,6 | 15               | 676                                | 880                               | 13,0                            | 78                      | 53,8                             |  |  |
| 6                                                            | 7,2 | 95               | 5                                  | 7                                 | 0,4                             | 41                      | 1,8                              |  |  |
| CoV – koeficijent varijacije (eng. coefficient of variation) |     |                  |                                    |                                   |                                 |                         |                                  |  |  |

stvarne vrijednosti jer daju veće gubitke od stvarnih šteta i gubitaka života. Međutim, nedostatak zapisa potresa s promatranog područja onemogućava autore da zaključe jesu li ti precijenjeni rezultati uzrokovani metodom ili nesigurnostima vezanim uz podrhtavanje tla koje se odvijalo u tom području.

## 5. Zaključak

U ovom je radu prikazana pojednostavnjena metodologija, temeljena na DBELA pristupu, za procjenu gubitaka uslijed djelovanja potresa za pokrajinu Bitlis. Postupak se temelji na probabilističkom pristupu koji dopušta razmatranje materijalnih i geometrijskih nesigurnosti unutar promatrane tipologije građevina, kao i varijabilnost jednadžbi za predviđanje gibanja tla.

U provedenom istraživanju razmatrane su samo građevine izvedene od armiranog betona, koje čine 86 % od ukupnog broja građevnog fonda. Primijenjena metoda predviđa raspodjelu štete i smrtnosti za Bitlis za šest različitih potresnih scenarija, definiranih na temelju postojećih zapisa potresa. Procijenjeni su gubici u slučaju da se ponove stari potresni scenariji. Ustanovljeno je da dva od šest determinističkih potresnih scenarija uzrokuju značajnu štetu, gdje bi 3,2 do 7,2 % postojećih armiranobetonskih građevina pretrpjelo potpuno ili djelomično urušavanje. Ako se uzme u obzir odnos urušavanja od 6 % u Sakarya tijekom Golcuk potresa iz 1999. godine, što je najviši odnos za taj događaj, interval od 3,2 do 7,2 % pokazuje da bi ostvarivanje potresnih scenarija 4 i 5 bilo jednako katastrofalno za Bitlis kao i Golcuk potres iz 1999. godine.

Naročito je zanimljiva procjena smrtnosti. U Ercis potresu iz 2011. godine bila su 604 smrtna slučaja u Vanu, uz napomenu da Ercis ima 172.000 stanovnika te da je susjedna uprava Bitlisa. Scenarij 4, s magnitudom od Mw 6,7 i epicentrom u središtu grada, upućuje na ukupan broj smrtnih slučajeva od 1.519 osoba ako se potres dogodi tijekom dana te 1.985 smrtnih slučajeva ako se dogodi noću.

Također je prikazan i odnos srednje vrijednosti štete (MDR). Na primjer, za očekivane potrese magnituda 7,4 i 7,6 u obalnom predjelu Istambula, Adlar, dobiveni su odnosi MDR u iznosu od 16 i 18 % za cijeli grad. Za najrazornije potresne scenarije, odnos MDR za Bitlis za scenarij 4 iznosi 20,3 %, a za scenarij 5 13,0 %. Uz primijenjeni pristup je povezano nekoliko nesigurnosti. Prva razina nesigurnosti dolazi iz jednadžbi za predviđanje gibanja tla, a uzeta je u obzir kroz primjenu vanjske varijabilnosti te varijabilnosti unutar događaja zajedno sa shemom prostorne korelacije pri izradi polja gibanja tla. Viša razina ukupne nesigurnosti ipak dolazi iz podataka s terena koji opisuju karakteristike građevnog fonda i njihove razlučivosti. Svi parametri korišteni za definiranje građevnog fonda primjenom Monte Carlo simulacije imaju koeficijente varijacije (eng.

## LITERATURA

- Bommer, J.J., Spence, R., Erdik, M., Tabuchi, S., Aydinoglu, N., Booth, E., Del Re, D., Peterken, O.: Development of an earthquake loss model for Turkish catastrophe insurance, Journal of Seismology, 6 (2002) 3, pp. 431-446.
- [2] Strasser, F.O., Bommer, J.J., Şeşetyan, K., Erdik, M., Çağnan, Z., Irizarry, J., Goula, X., Lucantoni, A., Sabetta, F., Bal, İ. E., Crowley, H., Lindholm, C.: A Comparative Study of European Earthquake Loss Estimation Tools for a Scenario in İstanbul, Journal of Earthquake Engineering, 12 (2008) S2, pp. 246-256.
- [3] Bal, İ.E., Crowley, H., Pinho, R.: Displacement-Based Earthquake Loss Assessment for an Earthquake Scenario in Istanbul, Journal of Earthquake Engineering, 12 (2008)1, pp. 12-22.
- [4] Erdik, M., Aydinoglu, N., Fahjan, F., Sesetyan, K., Demircioglu, M., Siyahi, B., Durukal, E., Ozbey, C., Biro, Y., Akman, H., Yuzugullu, O.: Earthquake risk assessment for Istanbul metropolitan area, Earthquake Engineering and Engineering Vibration, 2 (2003) 1, pp.1-23., https://doi.org/10.1007/BF02857534
- [5] Erdik, M., Durukal, E.: Earthquake risk and its mitigation in Istanbul", Natural Hazards, 44 (2008) 2, pp.181-197.
- [6] Ansal, A., Akici, A., Cultrera, G., Erdik, M., Pessina, V., Tönük G., Ameri, G.: Loss estimation in Istanbul based on deterministic earthquake scenarios of the Marmara Sea region (Turkey), Soil Dynamics and Earthquake Engineering, 29 (2009) 4, pp. 699-709.
- [7] Erdik, M., Kamer, Y., Demircioğlu, M., Şeşetyan, K. 23 October 2011 Van (Turkey) earthquake, Natural Hazards, 64 (2012) 1, pp. 651-665.
- [8] Taskin, B., Sezen, A., Tugsal, U.M., Erken, A.: The aftermath of 2011 Van earthquakes: evaluation of strong motion, geotechnical and structural issues, Bulletin of Earthquake Engineering, 11 (2012) 1, pp. 285-312.
- [9] Özkaymak, Ç., Sağlam, A., Köse, O.: Van Gölü Doğusu Aktif Tektonik Özellikleri ATAG-7 Aktif Tektonik Araştırma Grubu 7. Toplantısı Bildiri Özleri, Yüzüncü Yıl Üniversitesi Jeoloji Mühendisliği Bölümü, 22-23 (2003), 01-03 Ekim 2003
- [10] Barka, A., Saroglu, F.: The tectonic relationship of the rise in water levels of Lake Van, Symposium for the reasons, effects, and solutions regarding the rise in the water level of Lake Van. Van Yüzüncü Yıl University Printing Office, Lake Van, Turkey, 1995.
- [11] Litt, T., Krastel, S., Sturm, M., Kipfer, R., Örçen, S., Heumann, G., Franz, S.O., Ülgen U.B., Niessen F.: Paleovan, International Continental Scientific Drilling Program (ICDP): Site Survey Results and Perspectives, Quaternary Science Reviews, 28 (2009), pp. 1555–1567, https://doi.org/10.1016/j.quascirev.2009.03.002
- [12] Bozkurt, E.: Neotectonics of Turkey –a Synthesis, Geodinamica Acta (Paris), 14 (2001), pp. 3-30, https://doi.org/10.1080/09853 111.2001.11432432
- [13] Işık, E., Aydın, M.C., Bakış, A., Özlük, M.H.: The Faults Near Bitlis and Seismicity of the Region, Bitlis Eren University, BEU Journal of Science, 1 (2012) 2, pp. 153-169,

*coefficient of variation* - CoV) u rasponu od 25 do 50 %. Kada se sve te nesigurnosti koje se odnose na građevni fond uključe u jednadžbe za procjenu gubitaka, ukupni MDR rezultati imaju CoV u rasponu od 41 do 91 %. S obzirom na sve to, predstavljeni pristup i dobiveni rezultati mogu biti korisni kao alat za hitnu procjenu gubitaka nakon potresa, ali zbog pripadajuće razine nesigurnosti još uvijek nije primjeren za izračun portfelja osiguranja. Smanjenje razine nesigurnost ostvarilo bi se definiranjem karakteristika tla po podupravama i povećanjem razlučivosti podataka.

- [14] Bal, I.E., Bommer, J.J., Stafford, P.J., Crowley, H., Pinho, R.: The influence of geographical resolution of urban exposure data in an earthquake loss model for Istanbul. Earthquake Spectra, 26 (2010) 3, pp. 619-634.
- [15] Bal. I.E., Crowley, H., Pinho, R.: Displacement-based earthquake loss assessment: Method development and application to Turkish building stock, ROSE Research Report 2010/02, IUSS Press, Pavia, Italy, 2010.
- [16] TÜİK "Bina Sayımı", Türkiye İstatistik Kurumu, 2000.
- [17] Bal, İ. E., Crowley, H., Pinho, R., Gulay, G. Detailed Assessment of Structural Characteristics of Turkish RC Building Stock in Northern Marmara Region for Loss Assessment Models, Soil Dynamics and Earthquake Engineering, 28 (2008) 10-11, pp. 914-932.
- [18] Bal, İ. E., Gulay, F.G., Gorgulu, O., Baysal, T.: Adana Bölgesindeki B/A Yapı Stoğu Karakteristiklerinin Hasar Kayıp Tahmin Modelleri Açısından İncelenmesi, İTÜ, İstanbul, 2007.
- [19] Calvi, M., Pinho, R., Magenes, G., Bommer, J., Restrepo-Vélez, L., Crowley, H.: Development of Seismic Vulnerability Assessment Methodologies over the past 30 years, ISET Journal of Earthquake Technology, 43 (2006) 3, pp. 75-104.
- [20] İzah Raporu "Bitlis (Merkez) Revizyon+İlave Uygulama İmar Planı İzah Raporu" Ankara 2007.
- [21] Crowley, H., Pinho, R., Bommer, J.J.: A probabilistic displacementbased vulnerability assessment procedure for earthquake loss estimation, Bulletin of Earthquake Engineering, 2.2 (2004), pp. 173-219, https://doi.org/10.1007/s10518-004-2290-8
- [22] Priestley M. J. N., Kowalsky, M. J.: Aspects of drift and ductility capacity of rectangular cantilever structural walls, Bulletin of NZNSEE, 31 (1998) 2, pp. 73-85.
- [23] Priestley, M.J.N.: Myths and fallacies in earthquake engineering, IUSS Press, Pavia, Italy, 2003.
- [24] Paulay, T. Priestley, M.J.N.: Seismic design of reinforced concrete and masonrybuildings, 1992, https://doi.org/10.1002/9780470172841
- [25] Priestley, M.J.N., Calvi, G.M. Kowalsky, M.J.: Displacement-based seismic design of structures, IUSS Press, Pavia, Italy, 2007.
- [26] NEHRP"Recommended provisions for seismic regulations for new buildings and other structures, Report FEMA-303, Building Seismic Safety Council, Federal Emergency Management Agency, Washington DC, 1997.
- [27] Akkar, S., Bommer, J.J.: Prediction of elastic displacement response spectra in Europe and the Middle East, Earthquake Engineering and Structural Dynamics, 36 (2007), pp. 1275-1301, https://doi. org/10.1002/eqe.679
- [28] Spence, R.: Earthquake disaster scenario prediction and loss modelling for urban areas, LessLoss Final Reports, IUSS Press, Pavia, Italy, 2007.
- [29] Jayaram, N., Baker, J.W.: Correlation model for spatially distributed ground-motionintensities, EarthquakeEng.Struct.Dyn, 38(2009), pp. 1687–1708.