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Periods and vibration modes for common RC frame structures

A theoretical method allowing determination of vibration modes for RC frame 
structures with identical floors, or with either the first or the last floor differing from 
other floors, is proposed in the paper. As a result of the research, all natural vibration 
modes for buildings with two to ten identical storeys are presented in a table. These 
results can be extended to include a greater number of floors (more than ten). A 
mathematical method for determining characteristic polynomial coefficients of a 
specific tridiagonal matrix is also proposed.
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Periodi i oblici titranja uobičajenih okvirnih AB građevina

U ovom se radu predlože teoretska metoda koja omogućuje određivanje oblika 
titranja okvirnih AB građevina s identičnim katovima ili s prvim ili zadnjim katom 
različitim od ostalih. Kao rezultat istraživanja, tablično su prikazani svi prirodni oblici 
titranja građevina s dva do deset identičnih katova. Ti se rezultati mogu proširiti na 
veći broj katova (više od deset). Predlaže se i matematička metoda za određivanje 
karakterističnih koeficijenata polinoma za posebnu trodijagonalnu matricu.
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Schwingungszeiträume und -formen üblicher Stahlbetongebäude

In dieser Abhandlung wird eine theoretische Methode vorgeschlagen, welche die 
Bestimmung der Schwingungsformen von allgemeinen Stahlbetongebäuden mit 
identischen Stockwerken oder mit einem unterschiedlichen ersten oder letzten 
Stockwerk ermöglicht. Als Ergebnis der Untersuchung sind alle natürlichen Formen 
der Gebäudeschwingung mit zwei bis zehn identischen Stockwerken tabellarisch 
dargestellt. Diese Ergebnisse können auf eine größere Anzahl an Stockwerken (mehr 
als zehn) erweitert werden. Vorgeschlagen wird auch eine mathematische Methode 
zur Bestimmung der charakteristischen Polynomkoeffizienten für eine spezielle 
dreidimensionale Matrix.
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1. Introduction

The seismic design of buildings requires either theoretical or 
experimental determination of natural modes of vibration. For 
this purpose, several methods have been developed based 
on the use of experimental data leading to the development 
of empirical formulas of the fundamental period. This is, 
generally, a function of a building height or a number of floors. 
Several authors including those cited in [1-4] have studied 
these experimental methods.
Theoretical methods have also been developed by several 
authors, as shown in [5-7]. The diagonalisation of Jacobi 
method was developed and deepened by Hochstenbach [8]. 
The power method outlined by Golub and Van Loan [9] and the 
Arnoldi method [10] were deepened by Saad [11]. Davidson’s 
method [12] has been investigated by several authors such 
as Crouzeix [13] and Morgan [14]. Verderam [15] and Oliveira 
[16] have compared the results obtained by experimental 
measurements to those derived by numerical calculations 
based on analytical methods. The determination of all natural 
modes of vibration has attracted the interest of many authors 
including Tong [17].
The aim of the method presented in this research is to 
theoretically determine all natural modes of vibration. This 
method is based on the determination of the polynomial, 
denoted P, derived from the determinant P = || [K] - ω2 [M] ||, 
where [K], [M] and ω represent the stiffness, the mass matrices 
and the angular frequency of the structure, respectively. 
The roots of this polynomial are angular frequencies of the 
structure.
During the polynomial developments, corresponding to buildings 
with "n" identical storeys, a process allowing determination of 
the coefficients of these polynomials is highlighted. Once these 
polynomials are determined, their resolutions are performed 
using numerical methods for calculating the roots of a polynomial 
of degree n. These roots are used to deduce pulsations of the 
structure. Thereafter, eigenvectors are calculated for each value 
of natural pulsation. Thus, a database containing all natural 
modes of vibration of the 2 to 10 storey buildings is established 
(with the possibility of extending the number of storeys).
Two additional cases, considered as being the most common 
in practice, have been studied in order to extend the field of 
application of this method. These cases represent buildings 
having either the first or the last storey different from other 
storeys.
The objective of this research work is to propose a simple and 
effective method for the determination of all natural modes 
of vibration that are necessary for seismic design of buildings. 
Additionally, all vibration modes of buildings having two to 
ten identical storeys are summarized in the proposed table. 
These results can be extended to a higher number of storeys 
(more than ten). The investigation of this table enables easy 
determination of all natural modes without repetition of 
calculations related to this type of buildings.

2. Building with "n" identical storeys

2.1. Modelling

Usually and quite commonly in building dynamic analysis, the 
mass of any storey is concentrated in its corresponding floor as 
shown in Figure 1.

Figure 1. Building modelling

The stiffness and the mass of each storey are marked as ki and mi 

respectively. xi is the displacement of each floor. It is assumed that: 
 - Floors are considered non-deformable and columns fixed at 

floors.
 - Masses are concentrated at floor storeys.
 - Each floor has a horizontal displacement xi in the direction 

(xx’), and rotation is restrained.

The stiffness matrix for n identical storeys is expressed:

[K] = k [K] (1)

where, k is the stiffness of each storey in horizontal direction 
and the matrix [K] is equal to:

 (2)

2.2. Angular frequencies

The matrix order [K] depends on the number of Degrees Of 
Freedom (DOF). This matrix is a specific tridiagonal matrix. This 
type of matrix has been studied by several authors such as 
Buchholzer [18], Jia [19] and Hou-Bia [20]. The mass matrix [M] 
is expressed by Eq. (3) as follows:

[M] = m [I] (3)
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where m is the mass of each storey and [I] the identity matrix, in 
which the order depends on the number of DOF.
Angular frequencies of vibration are obtained by solving Eq. (4):

|| [K] - ω2 [M] || = 0 (4)

By substituting the matrices [K] and [M] with their respective 
expressions, Eq. (4) becomes:

  where   (5)

Eq. (5) can also be expressed by:

|| [K] - a [I] || = 0 where  (6)

The polynomial Pn(a) = || [K] - a [I] || allows determination 
of eigenfrequencies and eigenvectors for any building of n 
identical storeys. This polynomial is independent of the values 
of stiffness k and masses m.
Once the roots of the polynomial Pn(a) are determined, angular 
frequencies can be deduced from the following relationship:

  where   (7)

The polynomial for RC frame buildings of different number of 
storeys has been developed as follows:

 - Zero storey (virtual building): P0 (a) = 1 (a11=1, Table 1.)
 - One storey: P1 (a) = 1-a
 - Two identical storeys: P2 (a) = 1-3a+a2

 - Three identical storeys: P3 (a) = 1-6a+5a2-a3

 - Four identical storeys P4 (a) = 1-10a+15a2-7a3+a4

 - Five identical storeys: P5 (a) = 1-15a+35a2-28a3+9a4- a5.

Based on these developments, a process aimed at determining 
all coefficients of the polynomial Pn (a) has been found and 
highlighted. This process is outlined in Table 1. Starting the 
matrix from Table 1 by a11 = 1 is essential for finding correct 
polynomial coefficients according to the algorithm logic. The 
same explanation is applicable to buildings in which the first 
or last storey is different from other storeys (see Tables 4 
and 5). Each coefficient is determined by the summation of all 
coefficients of the column located on the left and above the 
considered coefficient and the value of the coefficient located 
just above (from Table 1 coefficient 15 = 1+3+6+5). The first 
polynomial coefficient is 1. 
All coefficients of any polynomial corresponding to n storeys 
building (n DOF) can be determined starting from a single degree 
of freedom which corresponds to the polynomial P1(a) =1-a.It 
is noted that the polynomial has alternated signs. Polynomial 
coefficients are expressed as follows:

 (8)

It is noted that the Number Of Storey (NOS) is equal to (i-1): NOS 
= i-1. And the polynomial of a building of n storeys is:

 (9)

Once these polynomials are expressed, their roots ai are isolated 
by using the algorithm developed by Akritas & al [21] and the 
bisection method allows approaching these roots.
Several methods for determining the characteristic polynomials 
have been developed. Among these methods, the La Budde one 
is the closest to the proposed method.

Table 1. Polynomial coefficients Pn (a) for RC frame buildings of identical storeys

Number 
of storeys  

0 a11=1    

1 a21=1 1   

2 1 3 1  

3 1 6 5 1   

4 1 10 15 7 1       

5 1 15 35 28 9 1      

6 1 21 70 84 45 11 1     

7 1 28 126 210 165 66 13 1    

8 1 36 210 462 495 286 91 15 1   

9 1 45 330 924 1287 1001 455 120 17 1  

10 1 55 495 1716 3003 3003 1820 680 153 19 1

Ascending of the polynominal degree

0 j > i

1  j = 1; i = 1, ..., n

        2 ≤ j ≤ i
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La Budde’s method consists of two stages: In the first 
one, [A] is reduced to the upper Hessenberg form [H] with 
orthogonal similarity transformations and, in the second 
stage, the characteristic polynomial of [H] is computed using 
recurrence of sub-matrices. Knowing that [H] and [A] are 
similar, they have the same characteristic polynomials. If [A] 
is symmetric then [H] is a symmetric tridiagonal matrix and 
the La Budde’s method simplifies to the Sturm sequence 
method [22]. This case corresponds to the study presented 
in this paper. La Budde’s algorithm for calculating coefficients 
of the characteristic polynomial is presented in the following 
development.

 (10)

where [A] is a symmetric tridiagonal matrix (n x n).

In the process of computing the characteristic polynomial Pi(λ) = 
det(λI − Ti), the Sturm sequence method computes characteristic 
polynomials Pi(λ) = det(λI − Ti) of all leading principal submatrices 
Ti of order i, where Pn(λ) = P(λ). The recursion for computing P(λ) 
is presented in Eq. (11) [22, 9]:

   
2 ≤ i ≤ n

 (11)

In order to recover individual coefficients of P(λ) from the 
recursion of Eq.(11), the polynomial coefficients are identified 
by Eq. (12), [22, 9]: 

 
 (12)

    1 ≤ i ≤ n

The algorithm for calculating the coefficients of the characteristic 
polynomial of symmetric tridiagonal matrix [A] is presented in 
Table 2 [22].
Ckn is the kth characteristic polynomial coefficient of symmetric 
tridiagonal matrix (n x n). The coefficients of matrix (7 x 7) of Eq. 
(2) are calculated by the La Budde’s method. Results obtained 
by this algorithm are summarised in Table 3.

Table 3.  Coefficients of symmetric tridiagonal matrix (7 x7 ) by La 
Budde’s method

C1n C2n C3n … Cn-1,n Cn,n

1 c11=-a1

2 a1a2-b2
2

3 -a3c22-b3
2c11

…
k c1k-1-ak c2,k-1-akc1,k-1-bk

2 c3,k-1-akc2,k-1-bk
2c1,k-2

-an-1cn-2,n-2-bn-1
2cn-3,n-3

n c1n-1-an c2,n-1-anc1,n-1-bn
2 c3,n-1-anc2,n-1-bn

2c1,n-2 … cn-1,n-1-ancn-2,n-1-bn
2cn-3,n-2 -ancn-1,n-1-bn

2cn-2,n-2

Table 2. La Budde’s method for symmetric tridiagonal matrix (n x n)

The calculation of coefficients of the characteristic polynomial 
by using the La Budde’s method requires determination of 
intermediate values, which serve only to obtain the coefficients 
of the considered polynomial. On the other hand, the proposed 
method provides coefficients of the considered polynomial and 
also those of the characteristic polynomials of lower degrees.
Moreover, all coefficients of the polynomials characteristic of all 
matrices of any order related to Eq. (2) are deduced from the 
proposed algorithm. This database can be exploited without any 
iteration, and repetition of calculations is omitted.

2.3. Eigenvectors

Each angular frequency ωi has a corresponding eigenvector 
derived from the equation:

 (13)

C17 C27 C37 C47 C57 C67 C77

-2

-4 3

-6 10 -4

-8 21 -20 5

-10 36 -56 35 -6

-12 55 -120 126 -56 7

n = 7 -13 66 -165 210 -126 28 -1

Decreasing of the 
polynominal degree
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The kth and nth lines of Eq. (19) permit deduction of these two 
relationships:

 (20)
     k =1, ..., n - 2

In order to determine the eigenvector, it is necessary to assign 
a value of any element of the vector and deduce the rest of 
elements. Generally, the unit value is taken to be a random 
value. If Fn,i = 1; from the nth line of Eq. (19), and using the 
relationship presented by Eq. (18), Fn-1,i is obtained as follows:

fn-1,i = (1-ai) fn,i = P1(ai) (21)

The line (n-1) of Eq. (19) leads to fn-2,i 
as mentioned in Eq. (22):

fn-2,i = (2-ai) fn-1,i - fn,i = (2-ai) P1(ai) - P0(ai) = P2(ai) (22)

Successively, by the same reasoning, all elements are 
determined:

  k = 0, ..., (n-1) (23)

Thus, a corresponding eigenvector of a building of "n" identical 
storeys is determined for each value of ai. In fact, by replacing 
the value of ai in polynomials related to 1 to n-1 storeys, the 
corresponding eigenvector, normalized to the first element, can 
easily be obtained:

 (24)

2.4.  Modal participation factor and Modal Mass 
Participation Ratio (MMPR)

The modal participation factor Γi is defined in Eq. [23]:

 (25)

It can clearly be seen from Eq. (25) that the modal participation 
factor varies depending on the normalization of the mode 
shape. If {Fi}j is the ith mode shape normalized to jth element, the 
relationship between vectors{Fi}j and {Fi}k is:

 (26)

where (Fki)j, is the kth element of the ith mode shape normalized 
to jth element. Eq. (28) is obtained by replacing the expression 
of{Fi}j in Eq. (25):

 (27)

Periods and vibration modes for common RC frame structures

Using the same arrangements as for Eqs. (1), (3) and (5), Eq. (13) 
becomes:

 (14)

The eigenvector determination requires the use a property of a 
tridiagonal matrix as described below:

 (15)

 (16)

        

 (17)

The last matrix of Eq. (17) with a null column leads to the 
cancellation of its determinant. By applying the relationship of 
Eq. (17), the polynomial Pn(a) can be written in the following form:

 
 (18)

      n ≥ 2

The eigenvector {Fi} satisfies Eq. (14). It is also presented in the 
form of Eq. (19):

 
(19)
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Number 
of storeys

       Ascending of the 
            polynominal degree

0 a’  a’ = mn / m b’ = k / kn  

1 1 a’b’ a = ω2 / ω0
2 ω0

2 = k / m

2 1 a’b’+a’+1 a’b’    

3 1 a’b’+2a’+3 3a’b’+a’+1 a’b’   

4 1 a’b’+3a’+6 6a’b’+4a’+5 5a’b’+a’+1 a’b’  

5 1 a’b’+4a’+10 10a’b’+10a’+15 15a’b’+6a’+7 7a’b’+ a’+1 a’b’

 (28)

(Γi)k is the modal participation factor of the ith mode obtained 
using the ith mode shape normalized to kth element.
It can be noticed that the modal participation factor is different 
from the Modal Mass Participation Ratio, i.e. the ratio between 
the ith effective modal mass (Mi) and the total mass [23].

 (29)

The effective mass is independent of the normalization mode 
shape as it appears in the following. (Mi) is the ith effective 
modal mass obtained using {Fi}j, 

which is the ith mode shape 
normalized to the jth element. 

 (30)

Substituting Eqs. (26) and (28) into Eq. (30) leads to:

 (31)

It can be seen from Eq. (31) that the effective modal mass and 
the Modal Mass Participation Ratio are independent of the 
normalization of the mode shape.
Two additional cases of buildings frequently encountered are 
studied in order to expand applicability of this approach. These 

buildings represent buildings having either the first or the last 
storey different from the other storeys (refer to chapters 3 and 4).

3.  Building in which the first storey is different 
from other storeys

In this case, all storeys are considered as identical except for 
the first storey. The stiffness and mass of the first storey are 
denoted k1 and m1, respectively, while for each upper storey 
the stiffness is marked k and the corresponding mass is m. For 
this type of building, the polynomial coefficients are calculated 
exactly as in the case of identical storeys building by substituting 
the cell a11=1 in Table 1 by the value b = k/k1 in the same cell in 
Table 4, and the content of the cell a22=1 of Table 1 by ab in the 
corresponding cell in Table 4, where a= m1/m. 
However, all coefficients corresponding to higher order 
polynomials Pn(a) will be automatically deduced from the first 
two lines of Table 4. It can be noted that the polynomial has 
alternated signs. Thus obtained roots ai of the polynomial of 
degree n allow determination of angular frequencies ωi of the 
structure by ωi

2 = ai.ω0
2, and the eigenvector {Fi} corresponding 

to ai is then obtained by using Eq. (24).

4.  Building in which the last storey is different 
from other storeys 

In this case, all storeys are considered to be identical except for the 
last storey. This means that the stiffness kn and the mass mn of the 
last storey are different from those of other storeys, k and m.

Number 
of storeys

Ascending of the 
polynominal degree

0 b  b = k/k1

1 1 ab   a = m1/m

2 1 ab+b+1 ab  ω0
2 = k/m

3 1 ab+2b+3 3ab+b+1 ab a = ω2/ω0
2

4 1 ab+3b+6 6ab+4b+5 5ab+b+1 ab  

5 1 ab+4b+10 10ab+10b+15 15ab+6b+7 7ab+b+1 ab

Table 4. Polynomial coefficients Pn (a) for RC frame building in which the first storey is different from other storeys

Table 5. Polynomial coefficients  Pn (a) for RC frame building, in which the last storey is different from other storeys
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vibration by an iterative process based on diagonalisation of 
stiffness and mass matrices. For each iteration, a matrix noted 
[Qk] permits elimination of matrix elements  j and  as 
follows:

;   (32)

where [Qk] has the form:

 (33)

The constants "a" and "b" are determined by applying the value 
of zero simultaneously to  and  (see Eq. (34)):

 
(34)

After each iteration, extra diagonal elements are compared 
between themselves and to the imposed precision using the 
expression:

 (35)

Elementskij i mij, to be eliminated at the next iteration correspond 
to the maximum value of εij. It should be noted that the required 
accuracy of Jacobi method depends on the value of p.
After diagonalisation of stiffness and mass matrices, pulsations 
are determined by ωi

2 = kii
d / mii

d, where kii
d and mii

d are the 
elements of stiffness and the mass of diagonalised matrices, 
respectively. The eigenvectors matrix [f] is obtained by:

The procedure for determining coefficients of the polynomial Pn 
(a) is similar to the one explained in Section 3. In this case, the 
constant (b) should be substituted by (a’) and (a) by (b’), where 
a’ = mn/m and b’=k/kn. It can be noted that the polynomial 
has alternate signs. Angular frequencies and eigenvectors are 
determined by the same way as explained in chapter 3.

5.  Vibration modes for RC frame building of 
identical storeys

In this section, the case of a building with identical storeys 
is studied. Indeed, all natural angular frequencies, modal 
participation factors, modal mass participation ratio and 
eigenvectors, are determined. These parameters are calculated 
for nine buildings of two to ten storeys; this can be extended to 
a higher number of storeys (more than ten). The eigenvectors 
and modal participation factors are independent of stiffness and 
mass values, but are dependent on the ratio of two successive 
storeys characteristics (k and m).
Results are presented in Tables 6 and 7. To avoid repeating the 
same calculation procedure, this database can be investigated 
directly from Tables 6 and 7, or by creating a computer 
subroutine. The values of the modal mass participation ratio 
presented in Tables 6 and 7 are in accordance with the results 
obtained by Palermo & al. [24]. In fact, the value of MMPR 
corresponding to the first mode is located within the interval 
[0.82; 0.88] related to 5 storey buildings or greater. In addition, 
the summation of the MMPR deduced from three first modes of 
vibration is greater than 90 %.

6. Results and discussions

6.1. Case of RC frame buildings of identical storeys

6.1.1. Angular frequencies

A comparison with an existing method is made in order to 
validate the proposed method. The referenced method is 
Jacobi method revised and reformulated by Hochstenbach 
[8]. This method allows determination of natural modes of 

Number of storeys 2 3 4

MPF 0.7236 0.2764 0.5432 0.3492 0.1076 0.4307 0.3333 0.1840 0.0520

MMPR [%] 94.72 5.28 91.41 7.49 1.10 89.34 8.33 1.96 0.37

(ωi/ω0)2 0.3820 2.6180 0.19810 1.5550 3.2470 0.1206 1.0000 2.3473 3.5321

Eigenvector

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.6179 - 0.6180 1.8020 0.4450 - 1.2470 1.8793 1.0000 -0.3473 -1.5321

2.2471 -0.8019  0.5550 2.5319 0.0000 -0.8794 1.3473

2.8792 -1.0000  0.6527 - 0.5321

MPF - Modal participation factor. MMPR - Modal mass participation ratio

Table 6. Vibration modes for RC frame buildings of 2 to 7 identical storeys
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Table 6. Vibration modes for RC frame buildings of 2 to 7 identical storeys - extension

Table 7. Vibration modes for RC frame buildings of 8 to 10 identical storeys

Number of storeys 5

MPF 0.3563 0.3007 0.208 0.1062 0.0288

MMPR [%] 87.95 8.72 2.42 0.75 0.16

(ωi/ω0)2 0.0810 0.6903 1.7154 2.8308 3.6825

Eigenvector

1.0000 1.0000 1.0000 1.0000 1.0000

1.9188 1.3097 0.2846 - 0.8308 - 1.6825

2.6823 0.7153 - 0.9190 - 0.3097 1.8308

3.2284 - 0.3728 - 0.5462 1.0882 - 1.3979

3.5130 - 1.2036 0.7635 - 0.5944 0.5211

Number of storeys 6

MPF 0.3032 0.2690 0.2082 0.1353 0.0667 0.0176

MMPR [%] 86.96 8.91 2.69 1.01 0.35 0.08

(ωi/ω0)2 0.0581 0.5030 1.2908 2.2411 3.1361 3.7710

Eigenvector

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.9421 1.4970 0.7092 - 0.2411 - 1.1361 - 1.7709

2.7713 1.2410 - 0.4970 - 0.9419 0.2908 2.1361

3.4394 0.3609 - 1.0617 0.4681 0.8058 - 2.0120

3.9077 - 0.7008 - 0.2560 0.8290 - 1.2062 1.4269

4.1488 - 1.4100 0.8802 - 0.6680 0.5647 - 0.5150

Number of storeys 7

MPF 0.2638 0.2412 0.2000 0.1471 0.0921 0.0443 0.0115

MMPR [%] 86.21 9.02 2.86 1.18 0.50 0.19 0.04

(ωi/ω0)2 0.04371 0.38197 1.00000 1.79095 2.61803 3.33827 3.82709

Eigenvector

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.9563 1.6181 1.0000 0.2091 - 0.6180 - 1.3382 - 1.8271

2.8271 1.6181 0.0000 - 0.9563 - 0.6180 0.7909 2.3383

3.5744 1.0000 - 1.0000 - 0.4090 1.0000 0.2798 - 2.4452

4.1654 0.0000 - 1.0000 0.8708 - 0.0000 - 1.1653 2.1292

4.5744 - 1.0000 0.0000 0.5910 - 1.0000 1.2798 - 1.4452

4.7835 - 1.6181 1.0000 - 0.7472 0.6180 - 0.5473 0.5112

Number of storeys 8

MPF 0.2339 0.2177 0.1884 0.1499 0.1067 0.065 0.0306 0.0078

MMPR[%] 85.63 9.08 2.97 1.29 0.61 0.28 0.11 0.03

(ωi/ω0)2 0.0341 0.2996 0.7947 1.4527 2.1845 2.8915 3.4780 3.8645

Eigenvector

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.9660 1.7004 1.2053 0.5473 -0.1846 -0.8915 -1.4780 -1.8650

2.8650 1.8913 0.4527 -0.7004 -0.9659 -0.2053 1.1845 2.4780

3.6665 1.5158 -0.6597 -0.9307 0.3628 1.0745 -0.2727 -2.7565

4.3431 0.6861 -1.2478 0.1910 0.8990 -0.7526 -0.7814 2.6626

4.8718 -0.3490 -0.8442 1.0353 -0.5287 -0.4036 1.4277 -2.2091

5.2346 -1.2797 0.2303 0.3756 -0.8014 1.1123 -1.3287 1.4573

5.4191 -1.8269 1.1217 -0.8297 0.6766 -0.5881 0.5362 -0.5087
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Table 7. Vibration modes for RC frame buildings of 8 to 10 identical storeys - extension

 (36)

Table 8.  Example of a building of four identical storeys: Angular 
frequency

An example of a building of four identical storeys is treated 
herein. Results are summarized in Table 8. According to 
the results indicated in Table 8, the comparison of angular 
frequencies between both methods has revealed a good 
correlation of the proposed method. 

6.1.2. Eigenvectors

For the same example, the values of eigenvectors are also 
compared with those obtained by Jacobi method (see Table 
9) and a very good precision has been established. The lower 
precision is 99,835 %.

6.1.3.  Comparison of fundamental angular frequencies 
for buildings having 2 through 5 storeys

The fundamental angular frequencies, noted ω1, for buildings 
having 2 through 5 floors, are compared with those found by 
Jacobi method. The results of this study are shown in Table 10.

Number of storeys 9

MPF 0.2090 0.1979 0.1765 0.1476 0.114 0.0795 0.0476 0.0222 0.0057

MMPR [ %] 85.17 9.12 3.04 1.37 0.69 0.35 0.17 0.07 0.02

(ωi/ω0)2 0.0273 0.2411 0.6454 1.1966 1.8348 2.4910 3.0939 3.5783 3.8916

Eigenvector

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.9727 1.7589 1.3545 0.8034 0.1652 -0.4910 -1.0939 -1.5783 -1.8916

2.8915 2.0938 0.8348 - 0.3546 - 0.9727 - 0.7589 0.1966 1.4910 2.5782

3.7315 1.9240 - 0.2237 - 1.0882 - 0.3258 0.8636 0.8788 - 0.7749 - 2.9855

4.4697 1.2904 - 1.1379 - 0.5197 0.9189 0.3349 - 1.1579 - 0.2680 3.0692

5.0859 0.3458 - 1.3176 0.6707 0.4776 - 1.0280 0.3878 1.1978 - 2.8203

5.5635 - 0.6822 - 0.6469 1.0586 - 0.8400 0.1698 0.7337 - 1.6226 2.2658

5.8893 - 1.5458 0.4413 0.1797 - 0.6163 0.9447 - 1.1904 1.3630 - 1.4658

6.0544 - 2.0367 1.2447 - 0.9142 0.7382 - 0.6336 0.5685 - 0.5286 0.5069

Number of storeys 10

MPF 0.1894 0.1810 0.1651 0.1429 0.1164 0.0885 0.0601 0.0359 0.0165 0.0042

MMPR [%] 84.79 9.14 3.09 1.43 0.75 0.41 0.22 0.11 0.05 0.01

(ωi/ω0)2 0.0223 0.1981 0.5339 1.0000 1.5550 2.1495 2.7307 3.2470 3.6525 3.9112

Eigenvector

1.0000 1.0000 1.0000 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.9773 1.8019 1.4661 1 0.4451 0.1495 -0.7307 -1.2470 -1.6525 -1.9111

2.9105 2.2469 1.1495 0 -0.8019 -0.9777 -0.4661 0.5550 1.7307 2.6524

3.7787 2.2469 0.2192 -1 -0.8019 0.2956 1.0713 0.5550 -1.2074 -3.1581

4.5624 1.8018 -0.8282 -1 0.4450 0.9335 -0.3167 -1.2470 0.2646 3.3831

5.2443 1.0000 -1.4334 0 1.0000 -0.4351 -0.8399 1.0000 0.7702 -3.3075

5.8090 -0.0000 -1.2733 1 0.0000 -0.8685 0.9303 0.0000 -1.5373 2.9381

6.2440 -1.0000 -0.4334 1 -1.0000 0.5649 0.1601 -1.0000 1.7702 -2.3075 

6.5394 -1.8019 0.6379 0 -0.4450 0.7840 -1.0473 1.2470 -1.3879 1.4720

6.6888 -2.2469 1.3686 -1 0.8019 -0.6821 0.6052 -0.5550 0.5232 -0.5056

(ωi/ω0)2

Vibration 
mode

Proposed 
method

Jacobi 
method

Precision
[%]

1 0.12061 0.12061 100.00

2 1.00000 1.00000 100.00

3 2.34730 2.34734 99.998

4 3.53209 3.53205 99.999
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Table 10. Comparison of fundamental angular frequencies

Once again, it appears that the lower precision is 99.99 %, which 
confirms the validity of the method.

6.2.  Case of RC frame buildings in which the first 
storey is different from other storeys 

6.2.1. Fundamental angular frequencies

Examples of buildings of 2, 3, 4 and 5 storeys are studied in this 
section. In this case, the stiffness and mass of the first storey 
is marked k1 and m1, respectively, while k and m marks are used 
for the upper storeys. The constants "a" and "b" are equal to 
m1/m and k/k1, respectively. In order to verify the validity of the 

method, an example with a = 1.25 and b = 0.9 is considered. The 
corresponding coefficients of the polynomial Pn (a) are shown 
in Table 11.

Table 11.  Coefficients of polynomials for RC frame building in which the first 
storey is different from other storeys, case of a = 1.25; b = 0.9 

Table 9. Example of a building of four identical storeys: Eigenvector

Proposed method Jacobi method Precision [%]

{F1} {F1}

1.00000 1.00000 100.000

1.87939 1.87962 99.988

2.53210 2.53218 99.997

2.87939 2.87962 99.992

{F2} {F2}

1.00000 1.00000 100.000

1.00000 0.99968 99.968

0.00001 -0.00021 -

-1.00000 -0.99961 99.961

{F3} {F3}

1.00000 1.00000 100.000

-0.34730 -0.34754 99.931

-0.87939 -0.87954 99.983

0.65270 0.65301 99.953

{F4} {F4}

1.00000 1.00000 100.000

-1.53290 -1.53202 99.943

1.34730 1.34732 99.999

-0.53290 -0.53202 99.835

(ωi/ω0)2

Number of 
storeys

Proposed 
method

Jacobi 
method

Precision
[%]

2 0.38197 0.38197 100.00

3 0.19806 0.19806 100.00

4 0.12061 0.12061 100.00

5 0.08101 0.08102 99.99

Number 
of storeys

 

0 0,9    

1 1 1.125   

2 1 3.025 1.125  

3 1 5.925 5.275 1.125   

4 1 9.825 15.35 7.525 1.125

5 1 14.725 35.25 29.275 9.775 1.125

Ascending of the 
polynominal degree

Once roots of polynomials are determined and fundamental 
angular frequencies are deduced, these angular frequencies are 
compared to those arising from the Jacobi method. The results 
of this comparison are presented in Table 12.

Table 12.  Comparison of fundamental angular frequencies of RC 
frame buildings in which the first storey is different from 
other storeys: case of a = 1.25 ; b = 0.9

The result of the comparison once again shows that the method 
is valid.

6.3.  Case of RC frame buildings in which the last 
storey is different from other storeys 

6.3.1. Fundamental angular frequencies

Examples of buildings of 2, 3, 4 and 5 storeys are studied in this 
section. In this case, the stiffness and mass of the last storey 
are denoted kn and mn, respectively, while k and m are used for 
the lower storeys. The constants a’ and b’ are equal to mn/m 
and k/kn, respectively. The case where a’ = 0.20 and b’ = 4 is 
considered for comparison. The corresponding coefficients of 
the polynomials Pn (a) are summarized in Table 13.
The roots of polynomials giving fundamental angular 
frequencies are compared to values obtained by Jacobi method 
related of buildings of 2 to 5 storeys. Results are presented 
in Table 14. These results put in evidence the accuracy of the 
proposed method.

(ωi/ω0)2

Number of 
storeys

Proposed 
method

Jacobi 
method

Precision
[%]

2 0.38599 0.38599 100.00

3 0.20433 0.20433 100.00

4 0.12457 0.12467 99.92

5 0.08346 0.08347 99.99
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Table 13.  Coefficients of polynomials for RC frame building in which 
the last storey is different from other storeys, case of a’ = 
0.20; b’ = 4

Number of 
storeys  

0 0.2

1 1 0.8

2 1 2 0.8

3 1 4.2 3.6 0.8

4 1 7.4 10.6 5.2 0.8

5 1 11.6 25 20.2 6.8 0.8

Ascending of the 
polynominal degree

(ωi/ω0)2

Number of 
storeys

Proposed 
method

Jacobi 
method

Precision 
[%]

2 0.69098 0.69098 100.00

3 0.31927 0.31927 100.00

4 0.17560 0.17599 99.78

5 0.11009 0.11093 99.24

7. Conclusion

The method developed in this research work enables simple 
determination of all natural modes of vibration for three specific 
types of RC frame buildings (building having identical storeys, 
building in which the first storey is different from other storeys, 
and building in which the last storey is different from other 
storeys). Results obtained by means of the proposed method 
are compared to those obtained by Jacobi method. Precisions 
obtained through this comparison are very satisfactory. This 
puts into evidence the efficiency of the proposed method, 
which is characterized by simplicity. The computation was first 
conducted for buildings with 2 until 10 identical storeys, and 
conclusion is given via a table grouping all natural modes of 
vibration. This table can be used directly for structural dynamic 
analysis, and inserted in annex of a seismic design code of 
buildings. Using this procedure, structural engineers avoid 
unnecessary duplication of calculations related to this type of 
buildings.
In order to further extend area in which this method can be 
applied, two additional cases - considered as being the most 
common in practice – are also studied. These cases represent 
buildings having either the first or the last storey different from 
the other storeys.
A process giving all coefficients of the polynomial Pn(a) 
is highlighted for three above-mentioned specific types 
of RC frame buildings. Once roots of this polynomial are 
determined, the eigenvectors can easily be deduced as shown 
in Eq. 24. Another scientific contribution of this study is purely 
mathematical, as it allows determination of coefficients of the 
characteristic polynomial of a specific tridiagonal matrix.
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