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Subject review

Josip Dvornik, Damir Lazarević, Krešimir Fresl, Antonia Jaguljnjak Lazarević

On smoothness of solutions to structural problems and physical interpretation 
of weak formulation

Typical structural modelling solutions are classified and described in the paper based on 
an approach that is more interpretative than formal. A special emphasis is placed on weak 
formulation and its physical interpretation which, in the authors’ opinion, is lacking in the 
literature. The attention is also drawn to approximation errors, caused by insisting on 
excessive smoothness of solutions. These considerations are backed by examples. It is 
hoped that the paper will contribute to the understanding of the essence of approximation 
of practical models in civil engineering, while clearly demonstrating the power of weak 
formulation - the foundation of approximation procedures.
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Pregledni rad

Josip Dvornik, Damir Lazarević, Krešimir Fresl, Antonia Jaguljnjak Lazarević

O glatkoći rješenja konstruktorskih problema i fizičkoj interpretaciji slabe 
formulacije

U radu su na više interpretativan nego na formalan način svrstana i opisana tipična 
rješenja modela konstrukcije, s posebnim osvrtom na slabu formulaciju i njezino fizičko 
tumačenje, koje prema našemu mišljenju nedostaje u literaturi. Upozoreno je i na pogreške 
u približenju radi ustrajavanja na pretjeranoj glatkoći rješenja. Razmišljanja su potkrijepljena 
primjerima. Nadamo se da rad može pridonijeti shvaćanju biti aproksimacije praktičnih 
modela u građevinarstvu i zorno predočiti snagu slabe formulacije - temelja približnih 
postupaka proračuna. 
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Übersichtsarbeit
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Glatte Lösungen bei Konstruktionsproblemen und physische Interpretation 
schwacher Formulierungen

In der Abhandlung wurden auf eine mehr interpretative als formale Art und Weise die 
typischen Lösungen des Konstruktionsmodells eingeordnet und beschrieben, unter besonderer 
Berücksichtigung der schwachen Formulierung sowie deren physische Auslegung, die unserer 
Meinung nach in der Literatur fehlt. Hingewiesen wird auch auf die Fehler bei der Annäherung, 
um auf einer übertrieben glatten Lösung zu bestehen. Die Überlegungen werden durch 
Beispiele untermauert. Wir hoffen, dass die Abhandlung dem Verständnis des Kerns der 
Approximation der praktischen Modelle im Bauwesen beitragen und die Stärke der schwachen 
Formulierung – Grundlage der ungefähren Berechnungsverfahren anschaulich darlegen kann.
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1. Introduction 

It is well known that differential equations of linear mathematical 
models based on the displacement method can be symbolically 
written as

 (1)

where  is a differential operator that acts on the desired 
displacement vector field . The result of the action is equal 
to a given load vector field , because the equation represents 
equilibrium conditions. Beside the differential equation, the 
solution should also meet boundary conditions for displacements. 
Theoretically, there is only one (exact) solution to the problem [1, 
2]. Fortunately, good approximate solutions can be determined 
for engineering purposes [3, 4]. Moreover, there is an infinite 
number of them. Let’s move gradually from an exact solution to a 
weak solution, which presents a number of advantages.

2. Strong solution

The above title indicates that such a solution, if it exists, meets a 
strong formulation - differential equation and boundary conditions. 
Results can be sought in all or in a sufficiently large number of 
points of the domain. The displacements are exact: in the first 
case they are most commonly expressed by a formula, and in the 
second case by a set of function values.
The set can be determined in two ways. First, it can be defined 
analytically, by entering the input data from the points of the domain 
into a closed solution, because it would be overly complicated 
to express it by a formula [5]. Second, it can also be determined 
numerically, if discrete values cannot be obtained directly, but have 
to be calculated (for example, iteratively, to an arbitrary precision). 
This is called an almost strong solution (Section 4). Through such 
analytically or numerically defined “cloud” of points, a polynomial 
or a similar function can sometimes be plotted, which can also be 
presented by formula. Unlike the exact one, this solution is only 
valid at certain points. If both formulas were valid in all points of 
the field, they would have to match because the exact solution of 
a linear model is unique. The following can be deduced from this 
short description: the exact solution is strong, but a strong solution 
can be approximate.

In some simple and “genteel” cases a strong solution can be 
determined directly, by solving a differential equation. Such 
examples, most often very idealized, are called smooth examples. 
They pertain to the domain of uniform properties, with no concave 
edges, mostly with constant boundary conditions, and to loads 
described by a smooth or partially smooth function. A typical 
example is a circular, simply supported slab of constant properties 
and loads. The solution, which can also be called genteel, is a fairly 
smooth function, as already highlighted, that is determined by a 
formula or a set of data that fulfils (1). In other words: the exact 
solution corresponds to an unbalanced load, a residual, equal to a 
null-vector:  . For the undeformed state  and 

, is valid, i.e. the residual is equal to the load. 
Mathematically, these conditions are neither necessary nor 
sufficient to provide a smooth solution. However, it can be 
stated, purely based on experience, that fulfilment of such 
requirements increases the possibility of finding a solution. 
Since conditions for smoothness are not sufficient, they can 
be fulfilled, without finding a strong solution. They are also not 
necessary so that a strong solution can be found even without 
meeting such conditions. A typical example of the latter case is a 
model with discontinuities and points with various singularities. 
Together with the corresponding solution, it will be named a 
strong model with exceptions.

3. Strong solution with exceptions 

This solution is smooth everywhere, except at some points where 
the values of displacements, rotations, deformations, and/or 
stresses tend to infinity. These are the points of the concave corners, 
with the concentrated forces or moments, the points of sudden 
change in thickness, modulus of elasticity, boundary conditions, 
etc. Physically, these are the areas of stress concentration. In a 
singular point the differential equation and/or its assumptions 
are not fulfilled. At such points the displacement field is often not 
derivable enough to be inserted into a differential equion.
An example is a simply supported slab, shaped as a three-quarter 
circle, with constant properties (Figure 1). Figure 1.a shows one 
deflection as possible solution, and Figure 1.b the corresponding 
load, determined by the inverse method. At the point of a concave 
boundary, the derivatives of the displacement field (internal 
forces and loads) tend to infinity. With the exception of the 

Figure 1. Simply supported slab: a) possible deflection surface, b) the corresponding load
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singular point, such a solution is like a strong or almost strong 
solution; it satisfies the boundary problem equations.
The mathematical accuracy of the solution does not guarantee 
its physical correctness. Often, there are (usually small) parts of 
the domain where contradictions exist: the differential equation 
solution is correct, but the assumptions necessary for its 
formation are violated. For example, small displacements and 
deformations are assumed by geometric linearization but, at 
some points, excessively large or infinite values are provided in 
the solution. Or the validity of Hooke’s law has been assumed, 
and computed deformations and stresses enter into the plastic 
part of the material model. Inconsistent regions are usually in 
the vicinity of singular points, but they may be farther away, 
even in smooth examples. Hooke’s law can be violated in a 
completely smooth place.
Apart from the area of distribution, the influence of such 
disturbances is also limited. According to Saint-Venant’s 
principle, it has a significant local, and negligible global influence 
on the resulting fields. Structural engineers may implement such 
solutions, but they must be aware of the consequences and carry 
out additional local checks, correct the obtained values, use more 
precise modelling at singular regions, round concave edges, and 
often apply structural measures (use of strengthening elements, 
stiffeners and haunches) around such points.
Many strong solutions (traditional ones and solutions with 
exceptions) can be generated by inverse or semi-inverse 
methods [6]. So determined, they usually have no practical or 
theoretical significance, but they are used for verification of 
numerical methods.

4. Almost strong solution

This solution, that can be marked as , approximately satisfies 
the differential equation and boundary conditions at each point 
of the domain: 

 (2)

If  is put into the strong form, two questions must be asked. 
First: Is the approximate solution sufficiently derivable to be 
inserted into the equation? And second: If so, is the equation 
approximately satisfied? The second question makes sense only 
if the answer to the first one is positive, because the derivability 
can not be discussed if the numerical solution is defined by a 
series of discrete values. If the solution can be inserted in (2), 
the validity can be evaluated with the residual. 

  (3)

Because of approximate nature of , the part of the load is not 
balanced. If the inverse method is applied to , we get ,  
which gives the corresponding load . Of course, it differs from  

 (otherwise  would be the exact solution). Now according to 
(3) the residual can be written as follows: 

     (4)

If the approximate solution is good then  and, as with 
most approximations, the error must be less than the criterion, 
i.e. . Although we have highlighted in Section 2 in the 
paragraph relating to smooth examples that the almost strong 
solution is as close as we wish it to be to the strong solution, 
the almost strong solution is mostly identified with a numerical 
solution that approximates the strong one very well.
In special cases, if the exact solution lies in the space of 
coordinate functions, the numerical approach does not 
give an almost strong solution but rather a strong solution. 
For example, if the exact solution is a polynomial, and the 
coordinate functions form a complete set of polynomials, the 
Ritz method [7] gives a strong solution. If the exact solution is 
not a polynomial, but it can properly be approximated with a 
polynomial, we get an almost strong solution. It can also be used 
for problems with exceptions, but then the space of coordinate 
functions must contain singularities in the places where they 
appear in the exact solution. Such functions are rarely chosen 
in practical situations. The finite difference method [8] also 
provides an almost strong solution in all instances, except near 
the singularities and discontinuities. In regular points, the exact 
solution can be expanded into convergent Taylor series, and 
the solution derivatives can in such cases be reasonably well 
approximated by finite differences. Other numerical methods 
also give an almost strong solution, if the exact solution is a 
sufficiently (or at least partly) smooth function.
Unfortunately, some numerical methods are incapable of finding 
an almost strong solution of smooth examples, because the 
process itself generates parasitic discontinuities (those that are 
not inevitable, inherent to the problem, but are the consequence 
of method selection). For example, the finite element mesh [9, 10] 
often contains discontinuities at the boundary of two elements. 
Such coordinate functions can then be regarded as non-smooth.

5. Excessively strong approach to the solution

A strong solution also satisfies an excessively strong 
formulation: not just a differential equation, but also its 
derivatives, or additional equations formed by single and 
multiple derivation of the basic equation. That means, except 
in the singular points, that the solution may have a higher 
smoothness than is necessary for a strong or almost strong 
solution. The displacements have more continuous derivatives 
than is required by the equation. This approach is sometimes 
used in numerical methods. 
If applied to extremely smooth examples, this strategy does 
ensure better convergence. If the solution is a smooth, analytic 
function, with no singular points, it can even be infinitely 
differentiable. Solution to a very smooth problem is then simple 
and, with excessive assumptions, the accuracy of a strong 
solution is achieved with a smaller number of unknowns.
However, forcing an excessively strong solution can create 
difficulties in the case of exceptional points. The reason for this 
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is simple: by differentiating a strong solution with exceptions, we 
often increase the number of discontinuities. If there is a chance 
for a singularity, it will surely appear through this approach (Figure 
2). For example, differentiation of an equation for a plate, partially 
loaded with a constant load, creates new discontinuities at the 
boundary of the loaded and the unloaded parts.

Figure 2. An example of a singular point 

A very strong approach is emphasized here because it is 
sometimes believed that it speeds up convergence. An equally 
good approximation is obtained with shorter computing time 
(crude discretization, larger load or time steps), or a much better 
approximation is achieved within an equal time frame.
The truth is: if we insist on excessive smoothness, it speeds up 
solution of smooth problems but slows down the search for 
solutions with singular points and discontinuities of the region 
or function we try to approximate. More precisely, problems 
where the Taylor series is convergent are good candidates 
for acceleration, while acceleration is not possible where it is 
divergent or poorly convergent (we need a large number of 
terms for an acceptable solution). In such a case, by forcing 
smoothness, we deteriorate the solution process.
An example of an excessively strong approach. In order to advise 
the readers in greater detail about this aspiration toward using an 
excessively strong solution, it is of interest to consult the known 
equation on the motion of the model with one degree of freedom: 

 (5)

where m, c and k are the mass, damping, and stiffness, 
respectively, u denotes displacement, the first and second 
derivatives are velocity and acceleration, and f(t) is the load 
function. In the non-linear case constants may also depend, 
for example, on time, displacement and velocity, and so the 
equation can generally be written as: 

 (6)

where g is a function of such dependencies. If initial conditions 
at time t = t0 are 

u(t) = u0    and     (7)

we can include them in the differential equation and determine 
the initial value of the second derivative: 

 (8)

This is the normal accuracy that is required in the realization of time 
discretization procedures. For instance, it can be used for direct 
integration of dynamic equation [11, 12]. The increased accuracy is 
obtained if we derive the left and right sides with respect to time, 
and determine initial values of the third and higher derivatives, 
up to an appropriate order, depending on the desired degree of 
approximation: 

 (9)

...

Values can be included in Taylor series: 

  (10)

 

If time is calculated from t0 = 0, and the difference t - t0 is labelled 
with ∆t, and if contribution of terms of the order , is omitted, 
the development can serve as an explicit algorithm for solving the 
dynamic equation. The solution at the end of the first step (with a 
known initial displacement and derivatives) can be expressed as: 

 (11)
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At the end of the n-th step (with a known solution from the 
previous step), we have: 

 (12)
 

In very smooth cases, the numerical solution can be improved 
by this approach, but with a “strong” assumption: higher 
derivatives of the displacement function (higher order terms 
of the Taylor series expansion) have to exist. Furthermore, the 
physical interpretation of higher derivatives is also not clear.

6. Weak solution

Unfortunately, an almost strong solution, and especially a strong 
solution, cannot be found for many engineering problems, and so it 
is logical to ask a sub-question: If the questions from Section 4 are 
not fulfilled, is the numerical solution necessarily bad? The answer 
is optimistic: it is not. The differential equation and boundary 
conditions do not have to be approximately satisfied at all points. 
It is enough that they are valid integrally, at arbitrary parts of the 
region. The requirement   that corresponds to the almost 
strong solution is too restrictive. As to the strong solution for 
which  is valid, it should not even be argued about. That is, it 
is not needed to approximate or completely satisfy the equilibrium 
conditions at each point of the model. It is known that structures 
are not sensitive to local overloads, if the values are not too large 
(as in punching shear problems for example). Dead and live loads on 
slabs are prescribed uniformly, although significantly larger values 
are possible, such as grouping of furniture (bookcases) or people 
(during a meeting). And nothing terrible happens to the slab. Here, a 
nice idea arises: instead of the exact one, a good approximate load 
can be used.

6.1. Notion of substitute load

Substitution is so natural and intuitive for engineers that they do 
not even think of the consequences [13]. Difficulties arise during 
formal interpretation on mathematical models. Here are some 
examples when, without discussing residuals, a substitute 
load is applied. In doing so, we substitute continuous load with 
discrete load and vice versa.
The differential equation of a beam is easier to solve if load 
is presented by a smooth continuous function (such as a 
polynomial or a harmonic function) than if it is modelled with 
concentrated forces and moments. In engineering standards, the 
load of pedestrians or vehicles is replaced by a continuous one. 
In graphic statics it is the opposite: for graphical constructions, 
the continuous load is represented by a series of concentrated 
forces. In numerical methods, it is very similar. The loads in the 
finite element method always act as forces at the joints. During 
laboratory tests and load testing, the load is realized with a layer 

of gravel, with stone material, water barrels, sandbags, vehicles, 
despite the fact that it is prescribed as uniformly distributed.
According to fundamental mechanics, the loads are considered 
similar if their resultants are approximately equal. Equivalently, 
difference in total loads – the residual, is approximately equal 
to the null-function:

 (13)

This condition obviously does not also mean that . The 
residual is a vector function, so for small values over the 
domain it is not enough to require a small resultant (integral). 
For example, the residual may be an antisymmetric function 
(Figure 3). The areas underneath the curve are cancelled out by 
integration; therefore, the resultant is equal to the null-function, 
while the residual is obviously not. The above expression, given 
in the form of a sum over arbitrarily selected regions, is also not 
sufficient: 

 (14)

where UΩi = Ω. Using this formulation, the sum of the resultants 
(of residual) per region must be small, but again, some terms 
may be large opposite vectors that cancel each other in the sum. 
Obviously, additional requirement is missing: each resultant 
must be sufficiently small. This will also keep the sum close to 
the null-vector, and (13) and (14) will be satisfied

Figure 3. Good and bad residual function

There is a significant difference between the solution based 
on this strategy and the almost strong solution. The additional 
requirement means a small residual resultant over every region 
Ωi, not a small residual ordinate at each point of the domain. This 
approach guarantees a similar distribution of the given load and 
substitute load, similar resultants, (only) over each subdomain. 
The function of the residual that allows such substitute load is 
added to Figure 3. This solution strategy leads directly to the 
weak form. It should be pointed out: the strong and the almost 
strong solution trivially satisfy (13) and (14), because the 
residual is everywhere equal to (or close to) the null-vector.

6.2. Weak form

Formal understanding of previous explanations is not difficult 
but, in our opinion, a connection with practical examples is 
missing. That is why we have decided to further reduce the 
level of abstraction, generality and rigidity, in an attempt to 
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preserve mathematical correctness as much as possible. We 
tried to clarify the notion of a weak form by applying three 
simple examples. Of course, they are not a substitute for theory, 
but they help to illuminate issues from the other, physical side. 
After these considerations, the fundamental lemma of calculus 
of variations and the consequences of its introduction into 
numerical methods should be studied [14-16].

6.2.1. The experiment as motivation

Let’s imagine a simple task: one should test a uniformly loaded 
reinforced concrete slab. How can we achieve a constant load? 
Water is a good realization of a uniform load (Figure 4). On a 
rigid, horizontal slab, the depth of water is constant, so the 
load is the same at all points. Thinking more precisely, that is 
not exactly true. The deflection of the slab causes the change 
of depth and the load ordinate. If the slab is too thin, slender, 
deflections may be large, so we would have to take into account 
the non-linear relationship between the displacement and load. 
Even with a rigid slab, the realization of loading with water (due 
to formation of a watertight pool) would be quite inappropriate.

Figure 4. Water load model

Instead of water, it would be easier to realize the load with 
gravel (Figure 5). However, the slab needs to be enclosed again, 
but it doesn’t need to be watertight, and the application and 
removal of gravel is easier to implement. The total weights of 
the material and the uniformly distributed load (marked with ) 
have to match. The gravel should be uniformly distributed over 
the slab. With the first requirement we fulfil the integrals (13) 
and (14), and with the second one the additional requirement of 
equal loads on smaller regions of the slab. The gravel load must 
match the shape of the uniform distribution as well.

Figure 5. Gravel load model

Physically speaking, this substitution is very natural, and such 
an idea has been confirmed byexperience and experiments. 
Measured displacements and deformations (within the 
measurement accuracy limits) do not depend on load distribution. 
Regardless of whether the loading is realized by gravel or water, 
even very precise instruments will not register any difference.

However, the load on the slab at the grain level deviates 
significantly from a uniform pressure. It consists of irregularly 
distributed contact stresses, which highly oscillate around a 
uniform value. At the contact between grain and the slab, the load 
can be very large, and between the contacts there is no touching 
(or loading) at all. If the slab and grains are absolutely rigid (non-
deformable), the contact is realized at the point through which 
the contact force passes, and the stress at that place tends 
to infinity. In the case of real materials, the contact surface 
increases. Contact stresses develop, and the contact is realized 
over the small surface. Because grains support each other, the 
stresses act at an angle, since the roughness of the slab surface 
causes friction. Thus, in contrast to water, the slab is also loaded 
by horizontal forces (in addition to the vertical ones; see Figure 
5). According to the equilibrium equations, the resultant of the 
horizontal forces equals zero, and that of the vertical corresponds 
to the weight of the gravel. The same applies to any part of the 
slab. If the horizontal forces are reduced to the neutral plane, 
the moments equal to the product of horizontal forces and half 
the thickness of the slab act on it, but their sum is also zero. 
Vertical contact stresses affect distribution of normal stresses, 
perpendicular to the slab, but are not relevant for the design and 
according to the thin slab theory they are usually omitted.
A much coarser substitute load can be applied in the case of 
large structural dimensions as related to elements the load is 
applied to: we emphasized the substitution of a continuous load 
with concentrated forces, as well as stones, barrels, vehicles 
and the like. All loads differ from the uniformly distributed load 
considerably but, according to measurement results, they are 
practically equivalent. For example, with the funicular polygon 
we substitute a uniformly distributed load with a series of 
concentrated forces. At the beam points level, it is a very bad 
approximation. In almost all points, the vertical stress is equal to 
zero, and in a small number of points where the forces act, it tends 
to infinity. However, with an increase in the number and decrease 
in the spacing of concentrated forces, the approximation of the 
internal forces converges towards the solution for continuous 
load. A trivial example is shown in Figure 6.

Figure 6. Substitution of a continuous load with concentrated forces 
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As we can see, the intuition gives different answers if we are solving 
an abstract mathematical problem, the differential equation of the 
slab, or if we are carrying out the practical realization of experiment. 
Although, actually, it is the same slab. When we are thinking about 
approximate solution, we try to fulfil it in the best possible way, 
and so the (mathematical) intuition requires the lowest possible 
difference between the substitute load and given load. By achieving 
such a goal, the equation is approximately satisfied at each point, 
i.e. we get an almost strong solution. On the contrary, if we are 
thinking about a real slab, the (physical) intuition considers that a 
discontinuous, very rough load, is completely appropriate. Physical 
and mathematical intuition are thus in clear contradiction. From 
the results of experiments and mathematical proofs, we know that 
the first one is good enough, while the second one is restrictive and 
overly rigorous.
In terms of a strong or almost strong form, the layer of grains is not a 
good approximation of a uniformly distributed load. The differential 
equation is valid only for a small number of random points where 
the load value of grains almost or completely cancels the uniform 
load. Only in such places the residual is close to or equal to zero. 
Notice the null-points of residual functions in Figure 3.
Luckily, the gravel is levelled, and such a function satisfies a 
much weaker but sufficient condition: the integral of the residual 
(resultant) on any piece of the slab is very small. In this respect, 
the region must carry a sufficiently large number of grains so that 
the weight of the gravel is close to the resultant of a uniformly 
distributed load. Then, the resultant will change negligibly by 
random removal or addition of a few grains. If a very small piece of 
the slab is considered, it is loaded by several grains or by no grains 
at all, so the difference to the resultant of the constant load on 
such a small piece is usually enormous. Then even the change in 
the number of grains can have a significant effect on the resultant. 
However, the piece must be small enough, because the local load 
distribution must not significantly affect the entire slab. So, the 
shape of the slab pieces is not important, but the relation between 
the size of the piece and the size of the grain is.
The influence of the nonuniform segment load on distant parts of 
the slab can, according to the Saint–Venant principle, be replaced 
by the influence of a uniformly distributed segment load. If we want 
to repeat the experiment with the gravel layer again, the contacts 
would appear at completely different points and, in the sense 
of the strong form, loading would be different from the old one. 
There are infinitely many such equivalent loads, but the deflections 
and stresses are practically the same. If experiments are repeated 
by gradually reducing the size of gravel (and by ultimately using 
sand and dust), the number of concentrated forces and moments 
increases, while the spacing between them decreases. The residual 
function becomes more and more jagged, but its extreme values 
decrease. Displacements, internal forces and other values approach 
the correct values.
After these considerations, we can conclude: if residual function 
fulfils these conditions, the corresponding solution is called weak. 
The word “weak” may suggest that such a solution is worse than 
the “strong” one. We can see that it is not. Even if the differential 
equation is not approximately satisfied, the exact values 

approximate quite well the displacements, internal forces, and 
stresses obtained by the weak approach. Indeed, the weak solution 
is obtained by integrating the function of the substitute load, and 
by such an operation on a “rough” function, we are “smoothing” 
it. The more times we integrate the function, the smoother it 
becomes, and the approximation is better. Thus, despite the poor 
approximation of loading, already the shear force, obtained by the 
integration of loads, approximate the exact values much better. 
Bending moments are better approximated than shears, angles 
of rotation are approximated even better, while displacements are 
approximated the best. Let us consider some simple examples.

6.2.2. Strength of weak form

In addition to the spatial example with gravel, we decided to 
demonstrate the strength of the weak form on two simple 
planar models, which can exactly be solved for the given and 
substitute loads. First let us take a look at the simply supported 
beam with the span  = 1, subjected to the unit continuous load 

. The substitute load is chosen in the form of 

 (15)

where n is the number of half waves. We can consider it as a 
gravel load with idealized grains. Let us define the function of 
the residual with the expression 

 (16)

as if gravel is the given load, and the uniform loading is the 
substitute load. The extremes of the residual are ±1 and they do 
not depend on the number of waves. The integral of the residual 
load along the span is for the even n equal to the null-vector, 
and for the odd n is equal to the resultant of the half wave: 

 (17)

Relative error of beam values

Error of Definition of error Value

loading 1

shear force 1/(2np)

moment 1/(2np)2

rotation 1/(2np)3

displacement 1/(2np)4

for even n,
for odd n.

The value of the integral decreases with an increase of n. In the 
limiting case, when n → ∞, grains become smaller and smaller, 
and the value of the integral tends to zero. Relative errors, 
obtained by integrating residuals as loads, are given in Table 1.

Table 1. Error of beam values
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Numerators with the sign ∆ denote the residual of the beam 
magnitude, i.e. the difference in values that correspond to the 
substitute load and given load. For example, for the shear force 
we have 

 (18)

We can see constant maximum values of residuals (errors in 
load). With an increase in n the frequency of the residual function 
also increases and becomes more jagged, but the extremes 
remain the same. Internal forces and displacements due to such 
loads decrease in the way that is inversely proportional to the 
number of half waves; their errors tend to zero with different 
powers (the last column of the table).
At the same time, the load function becomes discontinuous at 
each point, and in the limit, it tends towards a non-derivable 
function, because it contains infinitely many null-points, spikes 
and jumps. Nevertheless, deflection and forces from such 
load are exactly defined continuous functions, because they 
completely satisfy the differential equation. And not only that. 
In the limit, the solutions match those for constant action. 
Obviously, the load becomes rougher, and the results get better. 
The substitute load with five and twenty half waves, and the 
corresponding internal forces, are shown in Figures 7.a) and b).
It looks as if the beam (can also be a slab or shell) is not sensitive 
to an increase in jaggedness of the load. We have already noted 
that such behaviour is expected because the integration, used to 
determine internal forces, smooths the load function. Physically, 
the simple beam behaves under residual load like a continuous 
beam with spans 1/n. The errors correspond to the distribution 
of beam values along such short spans. In the limit, all (spans, 
moments, and other values) tend to zero. If we determine the 
flexural and shear reinforcement by applying crude diagrams 
of internal forces, which correspond to the very bad “uniformly 
distributed continuous” load (Figure 7.a), the beam will be safe 
enough, and the difference in the reinforcement towards the 
“really” uniform action can be considered negligible, especially 
since the number of bars is an integer.

Figure 7.  Internal forces for rough approximation of uniformly 
distributed load
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Let us look once again at the simply supported beam that is now 
loaded with a unit force in the middle. The substitute load can 
be determined by the Fourier series expansion of concentrated 
force (Figure 8): 

 (19)
 

The load is continuous, the series is divergent, and the sum 
tends to infinity. However, the shear forces and moments of 
this loading approximate the exact values quite well. Figures 8.a 
and 8.b show solutions if force is approximated by five and forty 
terms.

Figure 8. Internal forces for crude approximation of concentrated load

Note, the load drawing scale in this example is not the same. If 
scales were the same, the waves of the load function, with the 
exception of the central spike, would be roughly equal.

7. Final considerations

Let us also note the known mathematical expression of the 
weak form. If we make a dot product of the residual of strong 
solution (the vector null function) and any vector function , the 
result will be a scalar null function. And a definite integral of 
such a function is equal to zero. Therefore, 

 (20)

where  is a test function [9]. The integral represents the scalar 
product of vector functions, and we can interpret it similarly to 
a scalar product of vectors. The scalar product for the arbitrary 
value and the direction of one vector (in this case ) is equal to 
zero, only if the second one (i.e.  ) is equal to the null-vector. 
This approach to the boundary problem is called a weak form, 
and the solution that satisfies it is considered weak.
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It’s easy to notice: if we know the solution of the differential 
equation, then ,  and value of (20) is also zero. So, the strong 
solution fulfils the weak form. From the previous examples we 
know that the reverse does not apply. The weak solution does 
not fulfil the differential equation. Even if we could insert it, we 
would get large residuals. In terms of the inverse method, it is 
the exact solution for the substitute load (gravel), and it is quite 
different from the solution for the given uniformly distributed 
load (water). Since the residual is a very non-smooth function, 
difficulties may arise with integration in expression (20). In such 
cases, the Lebesgue integral is used instead of the Riemann 
integral [17].
In practice, a strong form is rarely satisfied. But the weak form 
can almost always be fulfilled for a set of chosen test functions. 
Let us emphasize once again: this cannot guarantee the 
equilibrium of each point at the body, but only the equilibrium 
of any piece regardless of the way in which it is cut off. The 
corresponding residual can always be presented by an irregular, 
“rough” function with breaks and jumps. Despite all this, it is a 
physically correct solution.
An advantage should not be given to the strong form for one 
more reason. There are numerous reasons why mathematical 

models are not precise descriptions of real engineering problems 
[18]. Thus, even the exact solution of the model is not a solution 
to a physical problem [19]. We do not know this solution and we 
will never know it. In a building, each floor can have a different 
purpose and loading: imagine a sculptor’s studio, a dance school, 
or a martial arts course, and the slabs are always the same, 
designed for the same actions. Why then insist on precision? It 
is interesting to note: the material’s core is closer to the weak 
form than to the strong form. This is analogous to replacing a 
discontinuum with a continuum and vice versa.
From all these considerations it can be concluded that it is easier 
to satisfy the weak form, or to find a solution from a larger set 
of appropriate solutions, rather than to look for the exact, often 
very complex and the only one strong solution. And from the 
mathematical point of view, the integral formulation is easier to 
solve than the differential but also, in the light of application of 
computers, scalar variables are more suitable than vector ones. 
It is fairly known that expression (20) allows partial integration 
which, in relation to differential formulation (1), reduces the 
order of derivatives and smoothness of the solution [15]. In the 
end, in the theory of structures, the weak form is equivalent to 
the principle of virtual work [20, 21].
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