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Comparative study of various smeared crack models for concrete dams

The nonlinear seismic response of concrete gravity dams is investigated in the paper. 
Nonlinear fracture mechanics based on three smeared crack models is used for 
comparative study of the cracking profile and dam response. Using the finite element 
method, the dynamic equation is solved by means of the modified Newton-Raphson 
method and Bosak’s time integration algorithm. The effects of crack models on seismic 
response of Pine Flat Dam are discussed. The results reveal some differences in principal 
stress, dam crest displacement, and in the number and shape of cracks.
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Usporedna analiza različitih modela razmazanih pukotina u betonskim branama

U radu je istražen nelinearni seizmički odgovor betonske gravitacijske brane. Za usporednu 
analizu profila pukotina i odgovore brane primijenjena je nelinearna mehanika loma 
triju modela razmazanih pukotina. Primjenom metode konačnih elemenata, dinamička 
jednadžba je riješena modificiranom Newton-Raphsonovom metodom i Bosakovim 
algoritmom vremenske integracije. Razmotreni su utjecaji modela razmazanih pukotina 
na seizmički odgovor brane Pine Flat, a rezultati su pokazali da postoje razlike u glavnim 
naprezanjima, pomacima krune brane, broju i obliku pukotina.
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Vergleichende Analyse unterschiedlicher Modelle betrachteter Risse in 
Betondämmen

In der Abhandlung wurde die nicht lineare seismische Antwort des Gravitationsdamms 
aus Beton untersucht. Für die vergleichende Analyse der Rissprofile und die Antworten 
des Damms wurde bei drei Modellen die nicht lineare Bruchmechanik der verschmierten 
Risse angewendet. Durch Anwendung der Finiten-Elemente-Methode wurde die 
dynamische Gleichung durch die modifizierte Newton-Raphson-Methode und Bosak´s 
Algorithmus der Zeitintegration gelöst. Betrachtet wurden die Auswirkungen der Modelle 
der verschmierten Risse auf die seismische Antwort des Damms Pine Flat, und die 
Ergebnisse zeigten, dass es Unterschiede in den Hauptspannungen, der Verschiebung 
der Dammkrone, der Anzahl und der Form der Risse gab.
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1. Introduction 

The safety and stability of concrete dams during earthquakes 
has widely been studied by various researchers. Over the 
past eight decades, authors have conducted comprehensive 
seismic analyses on the dam–reservoir systems using different 
methods, one of the most notable being the FEM (Finite 
Element Method), and have considered different parameters 
such as water compressibility, dam-reservoir interaction, crack 
in dam body, etc. In the dynamic analysis of concrete dams, the 
interaction effect of reservoir can be represented by three basic 
approaches including the added mass, Eulerian approach, and 
Lagrangian approach. The added mass is the simplest approach 
that assumes the effect of reservoir approximated as an added 
mass attached to the dam. In Eulerian approach, the variables 
in the reservoir are expressed by the pressures or velocity 
potential and the structural variables are displacements. Since 
these two types of variables are different from each other, 
a special algorithm is required for the solution of the coupled 
system [1]. 
In Lagrangian approach, the behaviour of structure and fluid 
is represented in terms of displacements or velocity of the 
finite element mesh nodes, and some constrains and penalty 
functions are suggested to eliminate the spurious modes in 
the fluid [2-5]. Concrete gravity dams are likely to experience 
cracking due to low tensile strength of concrete and, as a 
result, nonlinear analysis of concrete dams will be inevitable. 
To understand the nonlinear behaviour of concrete dams, it is 
necessary to model the cracking and damage process. Over 
the past 35 years, extensive research has been carried out and 
researchers have introduced different crack models for studying 
behaviour of fractured concrete. Two classes of models based 
on the Discrete Crack and Continuum Crack models can be 
found in nonlinear study of concrete gravity dams. The Discrete 
Crack Model requires response monitoring and modification of 
the finite element mesh in accordance with crack configurations 
that occur at each loading phase. However, this approach 
explicitly shows the crack as a separation of two adjacent nodes 
in the finite element mesh that represents a more realistic 
simulation of crack opening. This model is applicable when 
the location and direction of cracks are discernible before load 
is applied on the structure [6, 7]. The use of the discrete crack 
model in fracture analyses of mass concrete dams remains 
limited because of tremendous computational costs [7]. Two 
methods can be used in the discrete crack model, i.e. the linear 
elastic fracture mechanics (LEFM) and the nonlinear fracture 
mechanics (NLFM). The discrete crack model with the LEFM 
has been applied in the past to investigate the static fracture 
response of concrete dams [7]. The LEFM analysis is applicable 
to a material with a negligible fracture process zone (FPZ). 
The concrete material of the dam appears to have a limited 
similarity with LEFM due to considerably large FPZ in relation 
to the dimensions of concrete gravity dams. This phenomenon 
is more critical around the dam neck [7, 8]. Ahmadi and Razavi 

[9] represented a finite element model of discrete cracks for 
modelling joints. They considered perfectly elasto-plastic 
behaviour for joint in tension, and linear elastic behaviour 
in compression and shear. Ahmadi et al. [10] introduced a 
nonlinear joint element with coupled tension-shear behaviour 
for the analysis of arch dams. Lotfi and Espandar [11] used the 
discrete crack method, non-orthogonal smeared crack, and 
combination of them, for seismic analysis of dams. 
The Continuum Crack Model is divided into the damage 
mechanics approach and the smeared crack model. Ghrib and 
Tinawi [12] used the anisotropic damage mechanics model in 
the nonlinear seismic analysis of concrete gravity dams. The 
model is capable of representing the opening and closing of 
cracks using element properties such as the compressive and 
tensile strength, and fracture energy. Some researchers such as 
Gunn [13], Valliappan et al. [14], Sumarac et al. [15], Labadi and 
Hannachi [16], Contrafatto and Cuomo [17], Grassl and Jirasek 
[18], Khan et al. [19] and Mirzabozorg et al. [20], applied damage 
mechanics to study behaviour of concrete. Also, Ardakanian et al. 
[21] considered nonlinear seismic behaviour of mass concrete in 
3D analysis based on an anisotropic damage mechanics model.
In the smeared crack model, cracks are modelled by appropriately 
modifying material properties. Smeared cracks are convenient 
when the crack orientations are not known beforehand, because 
the formation of a crack involves no re-meshing or new degrees 
of freedom. 
A tensile strength-based crack propagation analysis (Rashid 
[22]) is generally considered as an unreliable approach due to 
the mesh-dependent response prediction [23, 24]. The nonlinear 
behaviour in the FPZ, being significantly large for the concrete 
body of dams, is neglected in the conventional LEFM models. 
Under very slowly applied loads as well as under impulsive 
loads, the LEFM models appear to be capable of adequately 
predicting the concrete fracture behaviour. For short-term static 
loads and seismic-induced loads, NLFM models appear to be 
more appropriate as they take into account the strain softening 
behaviour in the FPZ [25].
The strain softening crack band constitutive model, derived 
on the basis of the fracture energy conservation principle, is 
regarded as a significant achievement in the finite element 
analyses of concrete fracture problems. The strain softening of 
the material based on the NLFM parameters included different 
crack models, failure criteria, different fracture modes, etc. [23].
However, the fracture propagation direction has not been 
precisely addressed in the crack band model. In most 
practical fracture problems, shear deformations in strain 
softening elements may cause rotation of crack bands. Crack 
constitutive models, which fix the local crack band at the 
initial inclination, generally lead to a severe stress locking due 
to the zigzag propagation of crack profiles in a continuous 
finite element mesh. De Borst and Nauta [26, 27] proposed 
a constitutive framework which allows non-orthogonal 
multiple crack formulations to alleviate the stress locking 
in smeared crack analyses. The non-orthogonal formulation 
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may result in ill-conditioned stiffness matrices due to close 
angular spacing of cracks in a finite element. By applying the 
rotating crack concept together with an implicit definition of 
the softened shear resistance of finite elements, the stress 
locking may be alleviated in smeared crack analyses [28, 
29]. By using a nonlocal constitutive model, the directional 
sensitivity of the crack band propagation in tilted finite 
element meshes may be eliminated [30]. However, the 
application of the nonlocal model in dam fracture analyses is 
limited. This is attributed to the requirement of an extremely 
fine mesh (at least three elements on a crack band) and 
also to the high computational costs associated with the 
spatial averaging of local response quantities. It has been 
established that the localized smeared crack models are very 
promising for applications in complex structural analyses, 
which is due to significantly lower computational costs and a 
simplified definition of the constitutive behaviour of material. 
Furthermore, the extension of local band fracture models to 
transient and three-dimensional analyses has proven to be 
relatively simpler [6, 7].
Bhattacharjee and Leger [6] studied the dynamic fracture 
response of Koyna Dam by applying the coaxial rotating crack 
model and the fixed crack model with a variable shear resistance 
factor in concrete model. In their analysis, the foundation was 
assumed to be rigid, and the results showed the formation of 
cracks at the base and at the upper portion near the point of 
downstream slope change for the Koyna earthquake.
Failure based on the smeared crack model was studied by many 
other researchers such as Ghaemian & Ghobarah [31], Vaseghi 
Amiri & Ahmadi [32], Weihe et al. [33], Mosler & Meschke [34], 
Cai [35], Lotfi et al. [36], and Calayir & Karaton [25], but none 
of these researches had the same result for the path of crack 
propagation with the observed prototype behaviour.
Mirzabozorg and Ghaemian [37] developed a model based on the 
smeared crack model in 3D models including the dam-reservoir 
interaction. Mirzabozorg et al. [38] investigated non-uniform 
cracking in the smeared crack model for 3D analysis of concrete 
dams. Mirzabozorg et al. [39] studied nonlinear behaviour of 
concrete dams under nonuniform earthquake records.
A numerical scheme based on the non-linear crack band theory 
was used by Guanglun et al. [40] to investigate the seismic 
fracture behaviour of Koyna Dam under the Koyna earthquake. 
The analysis of the dam with rigid foundation showed that 
cracks appeared at the upper portion of the dam near the point 
of change in downstream slope.
Kalani et al. [5] studied the 2D seismic fracture behaviour of 
concrete gravity dams under nonuniform earthquake and 
rotational and translational components of earthquake using 
the orthogonal multi fixed smeared crack.
Apparently, the fracture response of concrete dams with 
different smeared crack models has not been compared using 
the state of the art continuum mechanics models.
The main objective of this paper is to present a comparative 
study of different smeared crack models, namely:

 - the multidirectional fixed crack model (MFCM)
 - the coaxial rotating crack model (CRCM)
 - the orthogonal multi fixed crack model (OMFCM), in the 2D 

dynamic analysis of concrete dams.

2. Constitutive models for fracture analysis

When the maximum principal stress exceeds that of tensile 
strength, the fracture process is initiated in smeared crack 
models. The shape of the tensile-softening diagram mainly 
controls the crack propagation, and the energy absorbed in the 
crack band of the softening zone per unit cross-section area 
is defined as the fracture energy Gf, which is a characteristic 
parameter of the material. In this research, the following four 
steps are considered to study the fracture behaviour of gravity 
dam concrete: crack initiation criterion, strain softening, post 
cracking behaviour, and the closing-reopening of crack. The 
pre-cracking behaviour of concrete is assumed to be linear and 
elastic and stresses {σ} and strains {ε} are related as:
 
{σ} = [D] {ε} (1)

Where [D] is the constitutive relation matrix and is defined for 
an isotropic plane stress condition as:

 (2)

where, E and v are the modulus of elasticity and Poisson’s ratio, 
respectively.

Finite element analysis has a linear elastic relationship until 
the tensile strain energy density,½σ1ε1, where σ1 and ε1 are the 
principal stress and strain values, respectively. It becomes equal 
to the pre peak area under a uniaxial stress-strain diagram, 
usually determined from experimental tests (Figure 1).

Figure 1. Tensile stress-strain behaviour of concrete material [35]
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To consider the nonlinearity of concrete and also the effect of 
two axial stresses, the crack initiation criterion using the tensile 
strain energy can be written with Eq. (3), as follows [32]:

 (3)

Where σ1= 1.3 σt and σt is the uniaxial tensile strength of the 
concrete [5]. 

Thus, when the maximum principal stresses at a Gauss point 
of an element satisfy Eq. (3), the first crack is assumed to be 
formed in the element perpendicularly to the maximum principal 
stress, as shown in Figure 2. 

Figure 2. Crack element and local coordinates [35]

After crack initiation, the concrete behaves like a strain softening 
material. , for which as the strain increases, the tensile stress 
normal to the crack decreases. The strain softening relation can 
be derived from uniaxial tensile tests of a concrete specimen 
with deformation control. 
As shown in Figure 3, for the complete stress-strain relation, 
E, Et and Es are the initial modulus, the current secant modulus, 
and the tangential modulus, respectively and en is the local 
strain which is decomposed into the crack strains ecr  and the 
concrete strains eco. 

Figure 3.  Complete stress-strain behaviour of concrete material in 
tension [35] 

The slope of the softening curve is adjusted in such a way 
that the energy dissipation for a unit area of crack plane 
propagation Gf is conserved. The fracture energy Gf can be 
evaluated with Eq. (4), from [32]: 

 (4)

In which, hc represents the crack band width of the fracture 
process zone given by the characteristic length of the material; 
for concrete it is suggested hc = 3d where d denotes the 
maximum aggregate size in concrete [35]. In the finite element 
analysis, when the size of the element modelling the crack band 
width becomes greater than hc, the softening constitutive curve 
needs to be modified in accordance with the Bezant’s energy 
criterion [35] so that the fracture energy remains the same. 
Thus, the results remain independent of the element size.
As shown in Figure 4, in dynamic analyses, the initial modulus 
and the tensile strength are increased using the coefficients 
1.25 and 1.5, respectively [32]. 

Figure 4. Static and dynamic softening curve [5]

To consider the size effect of the structure and a more realistic 
model to match the experimental results, the shape of softening 
curve can also be changed in bilinear form as shown in Figure 5.

Figure 5. Stress-strain multi-linear behaviour after cracking [35]

In Figure 5,  is expressed with Eq. (5) as:

 (5)



Građevinar 4/2019

309GRAĐEVINAR 71 (2019) 4, 305-318

Comparative study of various smeared crack models for concrete dams

where, α1 and α2 are obtained using experimental results [35]. If 
α1 = 0 or the α2= 1, then  resulting in linear softening 
behaviour [5].
The stress-strain relation for a concrete element undergoing 
cracking is given by Eq. (6):

 (6)

where subscripts n and s represent local coordinates in 
accordance with the crack direction shown in Figure 2.  
[D]ns  represents the material property matrix for the same local 
coordinate orientation and is given by Eq. (7), from [5]:

 (7)

where m = Es/E is the ratio between the secant and initial 
modulus and b is the shear retention factor representing the 
extent of aggregate interlock on the crack surfaces. For the 
multi fixed crack model, β it is obtained using Eq. (8), by [35]:

 (8)

where,  and  are the crack strain and total crack strain, βmax 
is the maximum shear retention factor for the cracked element. 
For coaxial rotating crack model, the shear retention factor is 
obtained using by Eq. (9), by [32]:

 (9)

Where, εn and εs are strain components in the directions normal 
and parallel to the fracture plane, respectively. 

The definition of shear resistance factor variable according to 
(9), which takes into account deformations in both the lateral 
and normal directions to a fracture plane, is different from that 
of the usual formulations in which only the crack normal strain 
is often considered as the damage index. 
In CRCM, the local axis n-s is always kept aligned with the 
directions of principal strains, while in MFCM, the strains 
of the local axis system are not necessarily coaxial with the 
principal stress directions. In MFCM, the local axis system 
is first aligned with the principal strain directions at the 
moment of softening initiation, and is then kept fixed for the 

rest of the analysis. The mixed mode fracturing behaviour 
due to both tensile and shear stress conditions leads to 
rotation of principal stress axes when a crack is formed [27]. 
Consequently, the fixed crack axes no longer represent the 
principal stresses axes. 
In this paper, a new crack is initiated whenever the tensile 
principal stresses violate the crack initiation criterion, and 
whenever the angle between the current principal stress 
direction, normal to the crack plain of the last crack, exceeds 
a threshold angle. The threshold angle is an arbitrary angle 
that is not determined before, and its value should be 
obtained to see what angle is appropriate for a threshold 
angle. Depending on the different value of threshold angles 
for MFCM model, many cracks could occur at a gauss 
point and, in order to study its value, six threshold angles 
including 5, 10, 15, 20, 25, and 30 degrees, are considered. 
Also, a maximum of four cracks are allowed to form at a 
gauss point. 
The local constitutive relationship matrix [D]ins can be 
transformed to the global coordinate directions as follows [5]:

 (10)

where [T] is the transmitting matrix from the local to global 
axis.

During the seismic load, the cracks may close and reopen 
both periodically and progressively. As shown in Figure 
6, the simplified constitutive model for cracks closing-
reopening is adopted based on the tensile cyclic tests given 
in [5]. The element behaves linearly before cracking and also 
subsequently after the crack closes (with modulus E). 

Whenever the strain normal to the crack surface becomes 
positive again (tensile stress), the crack reopens with a 
decreasing secant modulus Es until the normal strain, which is 
equal to the total crack strain  (en = ). 

Figure 6. Closing-reopening behaviour of concrete material [5]
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3.  Lagrangian formulation for interaction of 
dam-reservoir system

In this paper, the equation of motion of the dam-reservoir 
system is solved using the Lagrangian-Lagrangian approach 
considering the linear, elastic, irrotational and inviscid fluid. 
Based on Lagrangian approach, F.E. equation of motion for the 
fluid domain is expressed by Eq. (11), from [5]:

 (11)

Where Mf, Cf, Kf, Uf

.
, Uf

..
 and Uf are the fluid mass matrix, damping 

matrix, stiffness matrix, the nodal acceleration, velocity and 
displacement vectors of F.E. mesh, respectively. Ff (t) is the time-
varying nodal force vector defined as Mfag when the earthquake 
ground acceleration ag is applied to the fluid.
The stress-strain relationships undergoing a small amplitude 
motion for 2D fluid element can be written by Eq. (12), by [25, 5]:

 (12)

where P, εV, C11 are the pressure, volumetric strain, and bulk 
modulus of the fluid, w is the rotation about the normal to the 
plane, Pw and C22 are stress and constraint parameter related 
with w, respectively [4, 5, 25]. 
Rotation and constraint parameters are included in the stress–
strain equation of the fluid, since the fluid irrotational constraint 
is considered by penalty function. A reduced integration order 
with four integration points is utilized in formation of the 
stiffness matrix of nine node quadrature fluid elements [4, 
5]. The Somerfield boundary condition is used for radiation 
condition in truncated far end of the reservoir [4, 31]. The nodal 
points along the normal direction at the truncated boundary and 
bottom of reservoir are assumed to have a zero displacement.
The interface condition between the dam reservoir surfaces 
must be determined to take into account the dam-reservoir 
interaction. Since the fluid is assumed to be inviscid, only the 
displacements along the direction normal to the interface are 
continuous, and this condition is imposed by the penalty function 
satisfied using the interface elements with the stiffness matrix 
Kint. The six-node element with three integration points is used 
in interface elements of the system [5]. Using the interface 
condition, the equation of motion of the coupled dam-reservoir 
system subjected to ground motion is given as follows [5].

 (13)

where, Mc, Cc and Kc are the mass, damping and stiffness 
matrices for the coupled system. Uc, Uc

.
 and Uc

..
 are the vectors 

of the displacement, velocity, and acceleration of the coupled 
system, and Fc(t) is the time-varying nodal forces vector of 
ground acceleration.

The damping matrix Cc is defined as the sum of internal damping 
and radiation damping. The internal damping is assumed to be 
proportional to the stiffness β1[K], where β1 is determined by 
specifying the desired damping ratio at a certain frequency 
and [K] is the structural or fluid element stiffness matrix. b1 is 
determined by applying the damping ratio of 5% for structural 
element and damping ratio of 0.1 % for fluid element [4, 5, 25].
Nine node iso-parametric plane stress elements with full 
integration point are considered for dam elements.
In this paper, the governing equation of the dam-reservoir system 
is solved by the Bosak’s method. For nonlinear analysis, the 
forces and displacements at nodes of the finite element mesh 
are selected for convergence criteria in the Newton-Raphson 
iteration technique in order to minimize the unbalance between 
the adjustable applied loads and the restoring forces of the system.

4. Numerical results

Several investigators over the decades considered the Pine Flat 
dam, to study the application of the smeared crack models. 
In this paper, the nonlinear dynamic analysis of the tallest 
monolith of the Pine Flat dam is performed by considering the 
dam–reservoir interaction. Geometrical characteristics and the 
finite element mesh for the tallest monolith of the dam and its 
reservoir are shown in Figure 7, and two elements on the FE 
mesh of the dam are marked, for which the time history graph 
of the response is plotted. These elements are elements No. 8 
at the heel of the dam base and No. 177 at the dam neck.

Figure 7.  Dimensions of tallest monolith of Pine Flat dam and its finite 
element mesh

Maximum water level in the reservoir is 116.2 m and the 
reservoir length is considered to be three times as long as the 
water level (B = 3h) while the foundation is assumed to be rigid.
Material properties adopted in the analysis are shown in Table 
1 [31, 32]. The bilinear softening curve of Cai [35] has been 
used to obtain the fracture results using α1 = 0.3 and α2 = 0.2. 
The horizontal and vertical acceleration components of Taft 
earthquake (1952) are selected and assumed to act in streamwise 
and vertical directions of the dam–reservoir system, respectively. 
The records of this ground motion and its characteristics are 
shown in Figure 8 and Table 2. Based on the sensitivity analysis, 
the integration time step of 0.002 sec has been adopted.
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In order to perform the linear and nonlinear dynamic analysis 
of the dam–reservoir system, a computer code is written in 
Fortran 91 by the authors. In all calculations, tensile strains and 
stresses are displayed with positive value.

Figure 8.  Taft earthquake acceleration, a) S69E component, b) vertical 
component

4.1. Verification

The linear horizontal responses of Pine Flat dam crest with 
impounded and with an empty reservoir due to S69E component 
of Taft earthquake, which are obtained in present work, are 
compared with the results obtained in [41]. 
These results are shown in Figure 9, and the agreement 
between the results is satisfactory. Some differences in results 
are referred to modelling of dam and reservoir with the 4-node 
element and semi-infinite element of reservoir and use of 
coarse element in  [4, 41]. 

Figure 9.  Linear horizontal response of Pine Flat dam crest due to 
S69E component of Taft earthquake, a) Dam with an empty 
reservoir, b) Dam with impounded reservoir

4.2. Response of Pine Flat dam

Nonlinear responses of the dam-reservoir system under 
seismic loading are compared in this paper, taking into account 
the cracking effect of the concrete material due to different 
smeared crack models. All analyses conducted in the paper refer 
to two cases:
 - Dam with an empty reservoir and without hydrostatic 

pressure of reservoir,
 - Dam with impounded reservoir and with the fluid-structure 

interaction (FSI) effect. 

The static responses are taken as initial conditions for the dynamic 
analysis of the system. In the case of the dam with an empty 
reservoir, initial stresses should be calculated taking into account the 

Material Bulk modulus K 
[MPa]

Tensile strength Ft 
[MPa]

Poisson's 
ratio

Damping 
ratio

Fracture energy G 
[N/m]

Unit weight γ 
[kN/m3]

Concrete 15556 2.0 0.2 0.05 150 24.5

Water 2070 - - 0.01 - 10

Table 1. Material properties of Pine Flat dam

Table 2. Characteristics of earthquake

Table 3. Natural frequency of system (rad/s)

Component Station Magnitude (Rishter) Epicentral distance PGA [g] Shear velocity

Horizontal-S69E Lincoln 
school 7.36 35 [km]

0.179
385.4

Vertical 0.155

Mode 1 2 3 4 5

Dam 20.04 41.2 55.41 70.99 107.09

Dam and reservoir 12.93 19.98 20.38 24.46 26.31
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dam body force only, while for the dam with an impounded reservoir, 
the loads are dam body force and hydrostatic pressure. Meanwhile 
the temperature effect is not taken into account in this paper.

The displacement time history of the dam crest, using different 
crack models with an empty reservoir, is shown in Figures 10 
to 16. 

Figure 10.  Crest displacement with empty reservoir (MFCM) and with 
threshold angle of 5°: a) horizontal; b) vertical

Figure 12.  Crest displacement with empty reservoir (MFCM) and with 
threshold angle of 15°: a) horizontal; b) vertical

Figure 14.  Crest displacement with empty reservoir (CRCM):  
a) horizontal; b) vertical

Figure 11.  Crest displacement with empty reservoir (MFCM) and with 
threshold angle of 10°: a) horizontal; b) vertical

Figure 13.  Crest displacement with empty reservoir (MFCM) and with 
threshold angles of 5°, 30°: a) horizontal, b) vertical

Figure 15.  Crest displacement with empty reservoir (OMFCM):  
a) horizontal; b) vertical
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Figure 16.  Crest displacement with empty reservoir MFCM model with 
threshold angle of 5°, CRCM and OMFCM: a) horizontal; b) 
vertical

No cracking occurs during at a relatively small ground motion. 
Near the slope change in the downstream face of dam, the 

stresses reach the concrete tensile strength and the first crack 
appears in the dam at 3.934 sec.
The difference in displacement amplitudes reaches significant 
levels (especially between 6 and 8 and 9 and 11 sec) as the 
cracks penetrate inside of the dam. Figures 10 to 15 show 
that the elongation of the vibration period is obvious for crest 
displacements, and confirm that the crack propagation changes 
the vibration period of the dam. In the cracking model, the crest 
displacement is dominated by the rigid-body of the upper portion 
of the dam after the crack formation near the dam neck. The 
nonlinear response analyses show that the dams remain stable at 
all the times.
The displacement responses of different crack models, 
including MFCM with 5° threshold angle, CRCM and OMFCM, 
are presented in Figure 16, where the results show that the 
differences between the responses are negligible.
Horizontal and vertical displacement responses of the dam 
crest, based on different crack models and considering the 
dam-reservoir interaction, are shown in Figures 17 to 20. 
The results show that cracking in the dam first appears at 1.59 

Figure 19.  Crest displacement with impounded reservoir (CRCM):  
a) horizontal, b) vertical

Figure 17.  Crest displacement with impounded reservoir (MFCM) and 
with threshold angle5°: a) horizontal; b) vertical

Figure 20.  Crest displacement with impounded reservoir (OMFCM):  
a) horizontal, b) vertical

Figure 18.  Crest displacement with impounded reservoir (MFCM) and 
with threshold angles 5°, 30°: a) horizontal, b) vertical
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sec at the heel of the dam base. As mentioned above, differences 
between displacement amplitudes increase between 6 and 10 
sec as the cracks propagate within the dam body. Other results, 
such as changes in the vibration period and dam stability, are 
similar to the case of dam with an empty reservoir.
In Figures 21 to 23, the maximum and minimum principal 
stresses in the centre of the element 177 in the case of the 
dam with an empty reservoir are presented based on different 
crack models. Similar results are observed in Figures 24 to 26 
and Figures 27 to 29 for the centre of the elements 177 and 8, 

respectively, when the reservoir effect is considered.
Figure 21.  Principal stresses of element 177 in dam with empty 

reservoir (CRCM)Slika 
Figure 22.  Principal stresses of element 177 in dam with empty 

reservoir (OMFCM)

Figure 23.  Principal stresses of element 177 in dam with empty 

reservoir, MFCM model with threshold angle: a) 5°; b) 30°

Figure 24.  Principal stresses of element 177 in dam with impounded 
reservoir (OMFCM)

Figure 25.  Principal stresses of element 177 in dam with impounded 
reservoir (CRCM)

Figure 26.  Principal stresses of element 177 in dam with impounded 

reservoir, MFCM model with threshold angle: a) 5°; b) 30°

Figure 27.  Principal stresses of element 8 in dam with impounded 

CRCM model OMFCM model
MFCM model with threshold angle

5° 10° 15° 20° 25° 30°
First crack 267 301 316 295 343 331 323 333

Second crack - 33 88 42 48 52 52 49
Third crack - - 23 2 - - - -

Fourth crack - - 6 1 - - - -

Table 4. Number of cracked points in dam with empty reservoir effect
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reservoir (OMFCM)

Figure 28.  Principal stresses of element 8 in dam with impounded 
reservoir (CRCM)

Figure 29.  Principal stresses of element 8 in dam with impounded 
reservoir, MFCM model with threshold angle: a) 5°; b) 30°

As shown in Figures 21 to 29, after the peak value of maximum 
principal stresses reaches the tensile strength of the concrete, 
cracking occurs in the gauss point, and its maximum tensile 
stresses decrease. For all smeared crack models, when the 
value of maximum principal stresses increases, then the 
minimum value of principal stresses decreases. In other words, 
cracking in the dams leads to redistribution of stresses.
As shown in Figure 21, by applying the CRCM model, the peak 
values of the maximum and minimum principal stresses are 
lower than those obtained by other models. In the OMFCM 
model (Figure 22), the peak values of the maximum principal 
stress are both qualitatively and quantitatively different from 
those of the CRCM model. 
In Figure 23, for MFCM with the 30 degree threshold angle, 
at about 7 sec and between 9 and 11 sec, the values of the 
maximum principal stresses are higher than the concrete 

tensile strength, which shows that tensile stress locking occurs 
at wider angles. Therefore, it is confirmed that the MFCM model 
with a large value of threshold angle is inappropriate for the 
nonlinear dam analysis.
Based on Figures 21 to 23, and in spite of the CRCM model, it can 
be seen that the tensile stress locking occurs in both the MFCM 
with the 30 degree threshold angle and the OMFCM model, and 
that the stress status in the MFCM with the 5 degree threshold 
angle is similar to the CRCM model.
After cracking, shear stresses cause rotation of principal axes 
and subsequently increase principal tensile stresses above the 
concrete tensile strength [35]. Accordingly, when the threshold 
angle assumes wider angles, then an increase of principal 
tensile stresses becomes more significant and the tensile 
stress-locking occurs. Therefore, the value of threshold angle 
should be limited to a certain angle to prevent stress-locking.
Peak values of minimum principal stresses for the CRCM, 
OMFCM and MFCM models amount to 4.7, 4.9 and 3.7 MPa, 
respectively. In case of the dam with an impounded reservoir 
(Figures 24 to 29), results are similar to those observed for 
element 177 in the dam with an empty reservoir.
Tables 3 and 4 show the number of cracked points in all 
smeared-crack models. The results show that the second 
crack occurs at the OMFCM and MFCM crack models, and that, 
at the MFCM model with the threshold angles equal to 5 and 
10 degrees, the third and fourth cracks can also be formed at 
some points of the elements that have become fully softened. 
In this research, the maximum number of cracked points in 
the MFCM model was observed at the threshold angle of 5 
degrees. At wider threshold angles, the number of cracked 
points decreases, and as the number of cracks at a gauss point 
increases, the effect of these additional cracks on the result is 
significantly reduced.
Crack propagation within the dam, obtained by different smeared 
crack models, is schematically compared in Figures 30 and 31. 
Cracks opened in a gauss point of an element are indicated by 
red dots at point ordinates. As shown in these figures, different 
smeared crack models create a small difference in the cracking 
pattern.
In the dam with an empty reservoir, cracks initially appear 
near the slope change in the downstream face of the dam, and 
then penetrate deeper inside the dam. Subsequently, due to 
compressive stresses resulting from the top block weight of 
the dam, the cracking path deviates in a downward direction. 
Simultaneously with the propagation of these cracks, other 

Table 5. Number of cracked points in dam with impounded reservoir effect

CRCM model OMFCM model
MFCM model with threshold angle

5° 10° 15° 20° 25° 30°
First crack 208 157 197 184 188 201 153 176

Second crack - 28 72 56 63 43 34 37
Third crack - - 43 28 21 12 7 1

Fourth crack - - 19 10 6 - -  -
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cracks also start to propagate at the upstream face of the dam 
(Figure 30). In case of a dam with an impounded reservoir, some 
cracks initially appear at the dam heel, and then they gradually 
propagate within the dam base. Subsequently, other cracks 
also start to penetrate into the dam body at the dam neck and 
at the downstream and upstream faces (Figure 31). Softened 

and completely cracked points can be 
closed and reopened at different times 
in dynamic analysis. The dam is able to 
retain its stability since it cannot undergo 
tensile stresses at the upstream and 
downstream faces at the same time.
The case of dam-reservoir, crack 
distributions, and deformed shape of 
the dam due to different smeared crack 
models, are presented in Figures 32 
and 33 at different moments (t = 3.802 
sec and t = 10.02 sec). According to 
figures 17 to 20 and 32, the dam crest 
tends to move downstream and thus 
the cracking occurs in the region of dam 
heel. Furthermore, Figures 17 to 20 and 
33 show that the dam suffers severe 
cracking in the upper part of the dam. The 
cracks at the downstream face and near 
the dam neck are opened, and so the 
upper part of the dam tends to become 
separated. Therefore, it can be observed 
that the cracking region is consistent 
with the deformed shape of the dam.

5. Conclusion

Different crack models have so far been 
presented because of the complex 
behaviour of cracked structures, such 
as concrete dams. The advantages 
and disadvantages of different crack 
models should be compared to obtain 
the most appropriate crack model. The 
nonlinear seismic response of the Pine 
Flat concrete gravity dam subjected to 
vertical and horizontal S69E component 
of Taft Lincoln is presented in this 
study. The dam-reservoir interaction 
is modelled using the finite element 
method and the Lagrangian approach. 
Nonlinear behaviour of concrete material 
is modelled using the nonlinear fracture 
mechanics based on the smeared crack 
concepts. Three smeared crack models 
are selected for concrete softening, 
and have successfully been used in the 
study of seismic response of the dam, in 

conjunction with the Bosak’s time integration. In spite of quite 
extensive occurrence of cracks in the dam body, no dynamic 
instability was observed. Main conclusions of the analysis are:

 - The response of dam crest in nonlinear analysis is 
different from that observed in linear analysis. These 
differences are due to the change of material behaviour 

Figure 31.  Distribution of cracks in dam with impounded reservoir, with FSI effect: a) MFCM 
with threshold angle 5; b) MFCM with threshold angle 10; c) MFCM with threshold 
angle 15; d) MFCM with threshold angle 30; e) CRCM model; f) OMFCM model

Figure 30.  Distribution of cracks in dam with empty reservoir, without FSI effect: a) MFCM with 
threshold angle 5; b) MFCM with threshold angle 10; c) MFCM with threshold angle 
15; d) MFCM with threshold angle 30; e) CRCM model; f) OMFCM model
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after cracking.
 - In all three crack models studied in the paper, the minimum 

value of principal stress decreases with an increase in the 
maximum principal stress value.

 - In the MFCM model, the principal tensile stress increases 
with an increase in the shear stress in a gauss point of 
an element. Hence, the tensile stress locking effect is 
unrealistically provoked by the higher threshold angle.

 - The MFCM model with a large value of threshold angle is not 
appropriate for stress calculation within the dam body.

 - With respect to the results, the CRCM model represents a 
more realistic nonlinear behaviour of a concrete dam due 
to its more logical and accurate assessment of the stress 
status during crack propagation.

 - The different crack modelling creates a small difference in 
crack propagation during earthquakes, whereat the final 
crack pattern of all three models does not differ substantially.

 - The selection of the integration time algorithm (Bosak’s 
time integration) is based on its ability to damp out high-
frequency noise resulting from the impact of crack surfaces 
due to the opening and closing of cracks.

Figure 32.  Distribution of cracks in the dam in case of included FSI effect 
(t=3.802 sec): a) MFCM with threshold angle 5; b) MFCM with 
threshold angle 30; c) CRCM model; d) OMFCM model

Figure 33.  Distribution of cracks in dam if FSI effect is included 
(t=10.02 sec): a) MFCM with threshold angle 5; b) MFCM 
with threshold angle 30; c) CRCM model; d) OMFCM model
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