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Design of movable frame structures using modified Cross procedure

An original procedure for static design of movable in-plane frame structures is presented 
in the paper. The presented design procedure was derived using the modified traditional 
Cross procedure (TCP). The introduction of the TCP modification has resulted in significant 
improvement of the design algorithm of movable frame structures as compared to TCP, 
especially as to elimination of the need to conduct greater number of individual iteration 
procedures, and to solve linear algebraic equation systems.
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Proračun pomičnih okvirnih konstrukcija modificiranim Crossovim postupkom

U radu je prikazan izvorni postupak statičkoga proračuna pomičnih ravninskih okvirnih 
konstrukcija. Prikazani proračunski postupak izveden je modificiranjem klasičnoga Crossova 
postupka (KCP). Uvedenom modifikacijom KCP-a postignuto je znatno poboljšanje 
proračunskoga algoritma pomičnih okvirnih konstrukcija u odnosu na KCP, posebice u 
pogledu uklanjanja potrebe za provedbom većega broja pojedinačnih iteracijskih postupaka 
i uklanjanja potrebe za rješavanjem sustava linearnih algebarskih jednadžbi.
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Vorherige Mitteilung
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Berechnung beweglicher Rahmenstrukturen nach modifiziertem Cross-
Verfahren

In dieser Arbeit wird das ursprüngliche Verfahren zur statischen Berechnung beweglicher 
planarer Rahmenstrukturen vorgestellt. Das vorgestellte Berechnungsverfahren wurde 
durch Modifizieren des klassischen Cross-Verfahrens (KCP) durchgeführt. Die eingeführte 
Modifikation des KCP erreichte eine signifikante Verbesserung des Berechnungsalgorithmus 
für bewegliche Rahmenstrukturen in Bezug auf KCP, insbesondere im Hinblick auf die 
Beseitigung der Notwendigkeit, eine größere Anzahl einzelner iterativer Verfahren 
durchzuführen, und der Notwendigkeit, Systeme linearer algebraischer Gleichungen zu 
lösen.
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1. Introduction 

In an era when computer facilities were not available worldwide, 
the procedures for structural design of in-plane static 
systems were mostly based on the traditional displacement 
method. Unknowns of this method are values of independent 
displacements of the system, and, for structures with a large 
number of nodes, this method leads to a mathematical problem 
of the linear algebraic equations system, with values of 
independent general displacements as unknowns. 
Using this kind of procedure for the analysis of multi-span and 
multi-floor in-plane frame structures often led to a problem 
involving a very large number of equations. In civil engineering 
practice, solving this mathematical problem was often arduous 
and lengthy and, therefore, a pressing need was felt to 
develop alternative methods for solving displacement method 
equations by eliminating the need to solve a large numbers of 
linear algebraic equations. Consequently, several procedures 
have over time been created for finding an iterative solution to 
equation systems, which involve step by step approximation of 
the final solution to the problem.
The pioneering approach in this kind of iterative procedures was 
the procedure proposed by K. Čališev [1-4], where the equation 
system is solved using the so-called successive approximation 
technique. In each iteration step of this iterative procedure, 
Čališev produces an equilibrium state of the considered node 
by calculating the rotation angle of that node, while the value 
of bending moment caused by the considered rotation is not 
calculated directly. Values of moments in the cross section of 
the structures are derived by using final rotation-angle values of 
all nodes. The process is repeated for all nodes of the structure 
so as to establish a satisfactory level of accuracy.
The procedure based on the idea similar to that proposed by 
Čališev was presented by H. Cross [5-8] in the so-called moment 
distribution procedure. In the Cross procedure, the need for 
calculating the increment of rotation values for the considered 
node is eliminated, and only the values of bending moment 
increments are calculated using the so-called division coefficients 
and transfer coefficients.
The procedure based on the Cross procedure, and applied on 
movable in-plane frame structures, was presented by P. Csonka 
[8-12]. For some types of structures, the Csonka’s procedure 
exhibits significant acceleration of the Cross procedure. Similar 
and almost identical procedure for accelerating the Cross 
procedure was independently created by O. Werner in Zagreb in 
1951. (described in [8, 10-12]).
Another iterative procedure for the analysis of movable in-
plane frame structures, based on the Ostenfeld’s formulation 
of displacement method, and known as the single iteration 
procedure, was presented by G. Kani in [13].
The procedure presented in this paper is also an iterative 
procedure for solving equations of the displacement method, 
which is a kind of extension of the Cross procedure applied on 
movable in-plane frame structures, and where a significant level 

of simplification and acceleration is achieved by introducing 
some changes to and extensions of the original Cross procedure. 

2. Existing iteration methods

2.1.  Traditional Cross procedure applied on 
unmovable in-plane frame structures

The traditional Cross procedure (TCP) is the procedure for 
structural design of in-plane structures, and is a kind of the 
so-called relaxation procedures. According to its mathematical 
basis, the original variant of this iterative procedure [5-7] is 
an incremental form of Jacobi’s iterative procedure for solving 
the system of n linear algebraic equations with n unknowns, 
where nodal rotation increments are given simultaneously for 
all nodes of the structure, and where transferred moment values 
obtained in neighbouring cross-sections are used in the next 
step of iteration. This TCP variant is used in the USA and in many 
other countries [14-16]. In addition, there is another variant of 
the Cross procedure in which the increments of nodal rotation 
are not given simultaneously. In this variant, using the “node by 
node“ technique, transferred moments are immediately used, in 
the same iteration step, for calculating equilibrium state in other 
nodes of the structure for which balancing nodal rotation is not 
as yet defined. This TCP variant constitutes an incremental form 
of the Gauss-Seidel’s iterative procedure, and it is often used in 
European countries.
The main idea of this kind of procedure is to establish an 
equilibrium state of the system gradually by rotating the 
considered node, while at the same time all other nodes in the 
structure are fixed against rotation in the current design step.
Using this procedure successively, node by node, the equilibrium 
state is achieved for all nodes of the system in each step of 
the procedure. The remaining unbalanced moments in each 
step of the procedure are the moments transferred from the 
neighbouring nodes of the system and, depending on the selected 
variant of the procedure, they will be introduced in the current 
step of iteration, or will be balanced in the next step of iteration.
s-th approximation of the value of bending moments in the end 
of an arbitrary member i-j can be written as:

 (1)

where: 
  
is the fixed-end moment at “i” end of the considered 

member i-j caused by application of an external load, µi,j is the 
so-called Cross division coefficient for “i” end of  i-j member, Mi

(k) 
is the sum of unbalanced moments in the node “i” of the in-
plane structure for the k-th step of iteration, p is the so-called 
Cross transfer coefficient which has a constant value, p = 0,5, 
µj,i s the Cross division coefficient for “j” end of  i-j member, Mj

(k) 
is the sum of unbalanced moments in the node “j” of the frame 
structure for the k-th step of iteration.
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The value of the Cross division coefficient for arbitrary cross 
section i-j of arbitrary node “i” of the considered structure may 
be expressed as: 

 (2)

where:  is the flexural stiffness of the i-j member (EIi,j is 
the product of modulus of elasticity and axial moment of inertia 
of cross section of the i-j member, Li,j is the length of the  i-j 
member), and ∑jki,j is is the sum of flexural stiffness values of 
all members which are connected at the “i” node under study.
The iteration ends when the convergence criteria are 
established. The convergence occurs when the values of all 
transferred moments in the s-th step of iteration become lower 
than some predefined value ε:

 (3)

for each µj,i Mj
(s) of the system.

For many years, TCP was a powerful design tool for static 
design of in-plane structures because the need for solving 
large numbers of linear algebraic equations was eliminated 
from the design process, and the entire process was reduced to 
simplest arithmetical operations between division and transfer 
coefficients, and on the summation of values of individual steps 
of the procedure.
Today, in modern era, when the procedures for static design of 
in-plane structures are generally based on matrix formulation 
of the finite element method, TCP is rarely used as the tool for 
static design of in-plane structures. However, it still remains a 
very useful tool for the design of simpler frame structures and, 
consequently, it can be used as the algorithmic basis for creating 
smaller computer programs for the design of frame structures 
without using currently available modern commercial computer 
programs for the static design of structures.
TCP is still an unavoidable part of many study courses of 
structural design of in-plane structures at faculties of civil 
engineering throughout the world. For example, A. Kassimali’s 
course ( 2011 ) [14] in the USA, R.C. Hibbeler’s course (2009) 
[15], the course of K.M. Leet, C.M. Uang and A.M. Gilbert (2008) 
[16], are just some of the many study courses in which TCP 
is an unavoidable theme. In the Republic of Croatia, several 
study courses of Faculty of Civil Engineering at the University 
of Zagreb contain, as their unavoidable theme, the TCP, which 
is presented in a more or less identical form as given in the 
textbook published by M. Anđelić [8].

2.2.  Traditional Cross procedure applied on movable 
systems 

The original algorithm for TCP was created for static design 
of non-movable in-plane structures without translational 

displacements (according to displacement method), for example: 
continuous beams, non-movable frame structures, etc.
Due to the fact that the need for solving equation systems was 
eliminated and mathematical operations were reduced to just a 
few simplest arithmetical operations, which are repeated until 
the satisfactory level of solution accuracy is reached, TCP was 
used for many years in engineering practice as an easy iterative 
procedure for structural design of non-movable structures. 
The fact that TCP can not be used for the design of movable 
structures, such as in-plane frame structures, represents the 
main limitation of the initial version of this procedure. 
As a consequence, an advanced type of procedure for the design 
of movable structures has been developed on the basis of the 
original TCP. Using the original type of TCP, in the first step of 
this extended type, the restrained structure is designed for 
external load, as based on the original structure, by introducing 
restraints to prevent translational displacement of structure, 
and in which all nodes of the structure are fixed against 
rotation, and then the bending moments are determined, which 
are balanced in all nodes. The values of restraining forces for 
all introduced restraints can be determined using equilibrium 
equations of forces for isolated parts of structures.
After that, according to the unknown displacements, 
translational displacements are imposed, one by one, as 
external load on the restrained structure. Fixed-end moments 
are calculated, and the extended type of TCP is used for 
calculating new balanced moments and new restraining forces. 
At that, as translational displacements are the unknowns, the 
expressions for the moments and restraining forces will also 
contain this unknown displacement as an unknown factor. 
This procedure will be repeated for each unknown translational 
displacement and, consequently, n+1 individual Cross iteration 
will be obtained, where “n“ is the number of independent 
translational displacements of the system.
The final value of moments is obtained for each cross section 
by summing up moments of all individual influences ( n+1) of 
the total restraining force. The number of restraining forces is n, 
and each final restraining force contains n unknowns- values of 
translational displacements of the system.
As there are no restraints in the original structure, the value 
of each final restraining force should be 0. Consequently, the 
expressions for the restraining force actually become the 
system of n algebraic equations with n unknowns: n unknown 
translational displacements of the system. The values of 
translational displacements, obtained by solving the system of 
equations, are inserted in expressions for bending moments, 
and final solutions to the problem are obtained.
The use of such procedure for structures in which the influence 
of translational displacement is not negligible, i.e. in the design 
of movable multi-floor frame structures, often led to a lengthy 
process involving many individual Cross iterations, and to the 
problem of solving the system of linear algebraic equations 
with independent translational displacements as unknowns. 
Because of that, this type of extended TCP was often lengthy 
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and arduous and, in addition, the main advantage of TCP – no 
need to solve the system of equations – was eliminated.
The extended TCP applied to the design of movable in-plane 
frame structures is described in great detail in [8, 14-16].

2.3. Procedure developed by Csonka and Werner 

For the static design of movable in-plane frame structures, P. 
Csonka and O. Werner developed almost identical procedures 
which resulted in significant acceleration of TCP, and this in such 
a way that there was no additional need for “n” TCP iterations 
in in the design of in-plane frame structures with “n” floors. “n” 
TCP iterations are replaced by the original algorithm in which 
the influence of translational displacement is replaced by the 
influence of horizontal forces acting in the line of the beams 
of the frame structure. These horizontal forces have the same 
magnitude as the restraining forces for external load, but act in 
opposite directions.
These procedures are based on the assumption of equality 
of rotation angle values for all nodes of the same floor and, 
consequently, half-frame structures are substituted with “n” 
floors. This half-frame structure is loaded by the said horizontal 
forces and the flexural stiffness coefficients of its members 
are derived by summing flexural stiffness coefficients of the 
corresponding members of the original frame-structure.
The nodes of the half-frame structure are fixed but translational 
displacements are not restrained. 
As shear force values of all columns of the half-frame structure 
are 0, unknown rotation angles of the nodes are eliminated 
from equations of the displacement method and, according to 
TCP, an equilibrium state of moments is achieved by rotating 
the node under consideration, whereas all other nodes of the 
structure are fixed against rotation.
Due to the fact that the procedure for calculating influence of 
horizontal forces (influence of translational displacements 
of the floors) is applied on the structure with no-restrained 
translational displacements, the obtained division and transfer 
coefficients for this procedure differ from the corresponding 
TCP coefficients. 
The transfer coefficient for columns of the structure always 
amounts to p = -1,0 (except for the hinge support of the first 
floor column where p = 0), while the coefficient for the beams 
is p = 0. 
The balanced moments, obtained in cross sections of the 
substituting half-frame structure by using C-W iterative 
procedure, will be distributed back in cross sections of original 
frame structure according to the value of the corresponding 
stiffness coefficient of the obtained cross section member. 
Due to wrong assumption on which this procedure is based 
– that rotation angles for all nodes of the same floor are 
equal-the moments in the cross sections of original frame 
structures will be not balanced in the nodes, except in special 
cases. Consequently, in order to make balanced moments, 
TCP should be used again for the original frame structure 

with restrained translational displacements. By this repeated 
TCP iteration, the new set of restraining forces, which should 
be equal to 0, will be obtained. However, due to the fact that 
horizontal forces calculated via TCP are not balanced, the 
values of these restraining forces will generally not be equal 
to 0, and obviously there is the need for creating a new set 
of horizontal forces with the same magnitude as the obtained 
restraining forces, but with opposite directions. For these 
horizontal forces, the Csonka – Werner procedure should be 
conducted once again.
Theoretically, TCP and Csonka – Werner procedures should 
alternately be applied until a satisfactory state of equilibrium 
of nodal moments and a satisfactory equilibrium of horizontal 
forces is obtained. 
The number of alternating TCP and Csonka – Werner procedures 
can be reduced by applying the so-called corrective factor 
which contains the sum of products of shear forces and floor 
heights. However, he corrective factor may be used only when 
conditions of affinity of shear force diagrams for half-frame 
structure columns have been met.
The final solution for moments of the structure can be obtained 
by summing moments of first TCP and moments of the second 
TCP, multiplied by the corrective factor. 
A great advantage of the Csonka-Werner procedure is that it 
is no longer necessary to solve the system of linear algebraic 
equations nor to calculate translational displacement values. 
The procedure itself is reduced to simplest arithmetical 
operations.
The main deficiency of this procedure is the fact that, even in 
the domain of in-plane frame structures, it can only be used for 
structures with the same heights of columns at each floor, and 
with the same column supports at the first floor, but without 
hinge supports and hinge connections between members of the 
structure.
A detailed description of this procedure is given in [8, 10-12].

2.4. Kani’s procedure 

Another procedure for the static design of movable multi-floor 
frame structures, the so called single iteration procedure, was 
created by Gaspar Kani [13]. This procedure involves alternating 
cycles of calculation of balanced nodal moments (by setting, 
node by node, the corresponding nodal rotations) and cycles of 
calculation of moments in the columns caused by translational 
displacements of the beams of the structure. 
In Kani’s iterative procedure, the equilibrium state is produced 
on the structure with nodes fixed against rotation, without 
restraints to prevent translational displacement of structure.
Similar to TCP, Kani introduces the so-called division coefficients 
for calculating balanced nodal moments, but expressions 
for these Kani’s division coefficients are different from TCP 
coefficients. In Kani’s procedure, the influence of transferred 
moments is calculated by adding moments from the opposite 
end of the member, without using the transfer coefficient. 
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In Kani’s procedure, the influence of translational 
displacements of the beam lines of the structure is calculated 
using the so-called “translational transfer coefficient”, which 
is derived for each column from the equilibrium condition for 
horizontal forces of the considered isolated part of structures 
(created by cutting all columns of the considered floor under 
the beams). The moments in all columns of the structure can 
be calculated by multiplying translational transfer coefficients 
of the considered column with the sum of all moments of the 
corresponding floor.
One of the main differences between TCP and Kani’s procedure is 
the fact that Kani’s procedure produces the so-called “complete 
iteration” in which the final values of moments, which converge 
to the desired values, are calculated, while TCP is the so-called 
“differential iteration” in which the increments of the moments 
are calculated.
The fact that the final solution can always be produced after 
just a single iteration is a great advantage of Kani’s procedure. 
The need for calculating restraining forces and for solving the 
system of algebraic equations is completely eliminated.
Unlike Csonka-Werner procedure, Kani’s procedure has not 
limitation on the height of columns of the first floor of the 
structure (the columns can vary in height) or on the kind of 
column supports at the first floor, where the supports can even 
be a combination of fixed and hinge supports. 
In practice, TCP is more comfortable than Kani’s procedure 
because there are alternately cycles of calculating balanced 
nodal moments using transfer coefficients and cycles of 
calculating the state of equilibrium of horizontal forces using 
translational transfer coefficients.
A detailed description of Kani’s procedure is given in [17].

3. Modification of Cross procedure

3.1. Fixed-end moments of modified Cross procedure

The modified algorithm is based on the same assumptions 
on which the original Cross procedure is based: an equilibrium 
state is achieved on the undeformed shape of the structure, 
contribution of the translational displacement caused by axial 
deformation of members is neglected, and contribution of 
change of cross-sectional shape is also neglected.
Modified procedure described in the paper is derived for the 
design of in-plane structures that contain horizontal (beams) 
and vertical (columns) members only, without sloped (inclined) 
members and, at that, all columns of the first floor have the 
same height. 
The rotation of the member-ends and the corresponding 
bending moments have “+“ sign if they are counterclockwise. 
The normal force N has a “+“ sign if it is a tensile force, and shear 
force T has a “+“ sign if T and N create right-handed Cartesian 
coordinate system. 
The in-plane movable frame structure with five floors and 
one span (Figure 1), subjected to arbitrary external loads, is 

considered. The design is carried out by substituting frame 
structures in which the rotations of all nodes are fixed but, 
contrary to TCP, without restraints to prevent translational 
displacements (Figure 1). This substituting frame system is the 
so-called “basic system“. The images of “little squares“ (Figure 
2) placed in nodes of the basic system represent restraints 
for preventing nodal rotations only, without preventing 
translational displacements. 

Figure 1. Example of movable multi-floor frame structure

The definition of the “floor“ of the frame structure is introduced 
: the floor is a part of the in-plane frame structure that contains 
a row of columns and a row of beams. The beams of the 
considered floor are connected with upper ends of columns. 
The floors are numbered by numbers : 1, 2, 3 ... , meaning : “floor 
1“, “floor 2“, “floor 3 “ ....., where number 1 is the number of the 
lowest floor. 
For example, the third floor contains: columns 7-5, 8-6 and the 
beam 7-8. The third floor contains nodes 7 and 8. 
According to the assumption that axial deformations of 
the members are neglected, all nodes of a considered floor 
will obviously have the same magnitude of translational 
displacement. 
The rotation angle of columns ψi is defined as follows:

 (4)

where: ui is the displacement of an arbitrary i-th floor, ui-1  is 
the displacement of an i-th floor and hi is the height of an 
i-th floor (Figure 2), where the angle ψi has a “+” sign if it is 
counterclockwise. 
Figure 2 shows the rotation angle of the 3-rd floor columns. 
Using displacement method equations, the moments of 
arbitrary i-j column of arbitrary k-th floor, caused by external 
loads, can be written as: ψ3 = ψ7-5 = ψ8-6.

 (5)

while shear forces can be written as

 (6)



Građevinar 8/2020

660 GRAĐEVINAR 72 (2020) 8, 655-671

Alen Stupar

where:  is TCP’s fixed-end moment in i, j cross section, ki,j is 
the stiffness coefficient of i-j column, hk is the height of the k-th 
floor, ψk is the rotation angle of columns of the k-th floor which 
contains i-j column – caused by translational displacements of 
the ends of the considered column,  is the magnitude of TCP’s 
fixed-end shear force in i,j cross section of i-j column (where 
both ends are fixed against rotation). 

Figure 2. Deformed form of the substituting restrained system

Figure 3. shows an isolated part of the basic system obtained by 
intersecting 3-rd floor columns at their upper ends.
If we determine by expression (6) the values of transverse forces 
in sections 7.5 and 8.6 of columns 3 of floor 3, if we introduce 
the notation H3 for the value of the sum of all horizontal external 
forces located above the nodes of floor 3 (including forces in 
these nodes) ( in this case H3 = P1 + P2 + P3 + P8), if we include 
these values in the equation of equilibrium of horizontal actions 
of this isolated element, 

 (7)

where  is the sum of all external horizontal forces situated above 
the 3-rd floor nodes, (including nodal forces) and  and  
are shear forces of 3-rd floor columns determined from Eq. 
(6).
Using Eq. (7), the magnitude of rotation angle of 3-rd flor 
columns can be written as

 (8)

where  s the sum of TCP’s fixed-end shear forces 
for upper ends of 3-rd floor columns K3 = k7,5+k8,6 is the sum of 
stiffness coefficients of 3-rd floor columns.
Applying Eq. (5) (combined with eq. (8)) on the cross section 7,5 
of column 7-5 of the 3-rd floor, the magnitude of MCP’s fixed-
end moment caused by external loads for cross section 7,5 of 
column 7-5 of the 3-rd floor, can be written as:

 (9)

Figure 3. Isolated 4-th and 5-th floors of considered frame structure 

The magnitude of MCP’s fixed-end moment caused by external 
load for cross section 7,5 of column 7-5 of the 3-rd floor is given 
in expression (9). The magnitude of MCP’s fixed-end moments 
for all other cross sections of columns of the 3-rd floor ( 5,7, 
8,6 and 6,8 ) can be determined by applying Eq. (9) to all other 
columns of the 3-rd floor.
Based on the above considerations, as the considered 3-rd 
floor structure has been arbitrarily selected, Eq. (9) can be fully 
applied to any column at any floor of any in-plane movable 
frame structure, regardless of the number of columns per floor.
For arbitrary in-plane frame structure with arbitrary number of 
floors, and with arbitrary number of columns, the MCP’s fixed-
end moment for i,j cross section of arbitrary column i-j of an 
arbitrarily selected k-th floor, can be written as:

 (10)

where:  is the TCP’s fixed-end moment for i,j cross section 
of column i-j of the k-th floor, ki,j is the stiffness coefficient of 
column i-j of the k-th floor, Kk is the sum of stiffness coefficients 
of all columns of the k-th floor, Hk is the sum of all horizontal 
external forces acting above the k-th floor (including the forces 
acting alongside the beams of the k-th floor),  is the sum of 
TCP’s fixed-end shear forces for upper ends of all columns of 
the k-th floor, and  is the height of the k-th floor. 
As nodal translational displacement can not produce beam 
rotations, the magnitude of the MCP’s fixed-end moment for 
arbitrary u,v cross section of arbitrary beam u-v of arbitrary k-th 
floor can be written as

 (11)

where  is the TCP’s fixed-end moment for u,v cross section.

3.2. Division coefficient of modified Cross procedure

The MCP’s fixed-end moments obtained ,  i  
for cross sections of node seven of the basic system are not 
balanced and, consequently, they are not the final solution to 
the original problem because they are calculated for the system 
with nodes that are fixed against rotation. 
An overall unbalanced moment of node seven is the sum of 
individual moments:

 (12)
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where superscript (0) denotes the initial unbalanced state of the 
moments for node 7, according to step numbering of MCP.
Known expressions for the moments and shear forces of the 
fixed-end member i-j ( with length Li,j ), caused by forced nodal 
rotation ϕi and ϕj, are:

 (13)

 (14)

The moments for cross sections of node 7 of the basic system 
are produced by defining an angle increment ∆ϕ7

(1) . The sum 
of these moments has the same magnitude as the unbalanced 
moment M7

(1), but the sign is opposite (Figure 4). All other 
nodes of the basic system are fixed against rotation. The 
superscript “(1)” in ∆ϕ7

(1)  denotes the first step of the iterative 
procedure. 
It is obvious that, for this kind of loading, the sum of all external 
horizontal forces of arbitrary floor “k” is: 

 (15)

Figure 4.  Substituting restrained system subjected to load by rotation 
of node 7

The increments of the moments that are fixed-end moments 
caused by Dϕ7

(1) can be calculated by applying (13) to all cross 
sections of the structure, while all other nodes are fixed against 
rotation. The increments of the shear forces that are fixed-end 
shear forces caused by Dϕ7

(1) can be calculated by applying (14) 
to all cross sections of the structure.
Fixed-end bending moments and shear forces caused by Dϕ7

(1) 
can be calculated by applying (13) and (14) to the 3-rd and 4-th 
floors:

, ,

,  (16)

, 

and

, 
 (17)

where h3 is the height of floor 3, and h4 is the height of floor 4.

The sum of the fixed-end shear forces for all columns of the 
3-rd floor, and the sum of the fixed-end shear forces for all 
columns of the 4-th floor, can be written as 

 
(18)

By inserting (15), (16) and (17) into general expression (10), the 
expression for MCP bending moments for cross sections 7,5 and 
7,9 of columns 7-5 and 7-9 caused by rotation ∆ϕ7

(1) of node 7 
to which these columns are connected, can be written as: 

 (19)

where K3 is the sum of stiffness coefficients for the 3-rd floor 
and K4 is the sum of stiffness coefficients for the 4-th floor.

The combination of (11) with (13) yields the expression for the 
MCP bending moment increment for cross section 7-8 of the 
beam 7-8 caused by ∆ϕ7

(1):

 (20)

Assuming the expression for MCP coefficient  for arbitrary 
column i-j of an arbitrary k-th floor is defined as:

 (21)
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where ki,j is the stiffness coefficient of the considered column 
and  Ki is the sum of stiffness coefficients of all columns of the 
k-th floor to which the column i-j belongs. Now, (19) can be 
rewritten as follows:

 (22)

Assuming the expression for the MCP coefficient  for an 
arbitrary beam u-v of an arbitrary k-th floor is defined as:

 (23)

Now, (20) can be rewritten as follows:

 (24)

According to KCP tags, the definition of the MCP “division 
coefficient” can be introduced for arbitrarily selected cross 
section i,j of arbitrarily selected node “i”,

 (25)

where  is MCP coefficient for arbitrary cross section i,j of the 
node “i“ that can be calculated for cross sections of columns by 
applying (21), and for cross sections of beams by applying (23), 
and  is the sum of MCP  coefficients of all members that 
are connected to node “i”. Now, according to KCP, the balancing 
moment increment   ∆Mi,j

(s)( ∆ϕi
(s)) of any s-th MCP iteration 

step caused by incremental rotation ∆ϕi
(s), for any cross section 

i,j of any node “i”, can be written as 

 (26)

where  is the corresponding MCP division coefficient, and  Mi
(s) is the sum of unbalanced moments for node “i”, for the 

current s-th MCP iteration step.
According to definitions from KCP and MCP, the moments in 
Exp. (26) are the so-called MCP distributed moments.
Specifically, using (21), (23), (25) and (26) for cross sections 
of node 7, the balancing moment increments caused by 
incremental rotation ∆ϕ7

(1) …. (distributed moments) for the first 
iteration step, can be written as

, 
 (27)

where MCP division coefficients 7,5 i 7,9 are calculated by 
applying (21) and (25), and the coefficientt 7,8 by applying (23) 
and (25).

3.3.  Transfer coefficients of modified Cross 
procedure

Except in cross sections of node 7, bending moment increments 
caused by incremental rotation ∆ϕ7

(1) also occur in other cross 
sections of the basic system. 
By applying (15) and (16) (for cross sections of the column 
8-6) and (18) (for the 3-rd floor) to (10), the bending moment 
increments for cross sections 6,8 and 8,6 of the column 6-8 
caused by incremental rotation ∆ϕ7

(1)can be written as:

 (28)

where k7,5 and k6,8 are the stiffness coefficients of columns 
7-5 and 6-8 of the 3-rd floor, to which node 7 ( rotated by 
incremental rotation ∆ϕ7

(1) belongs.
If the corresponding sides of (28) are divided by the corresponding 
sides of expression (19) for ∆M7,5(∆ϕ7

(1)), we obtain:

 (29)

According to the definition from KCP, the MCP “transfer 
coefficient”  i,j-m,n  from the cross section i, j of an arbitrary 
column i-j at an arbitrary k-th floor can be applied to cross 
sections m,n and n, m of the column m-n at the k-th floor, as 
follows:

 (30)

where ki,j and km,n are stiffness coefficients of columns i-j and 
m-n at the k-th floor, and Kk is the sum of stiffness coefficients 
for the k-th floor. Then, by applying (46) to (29) for columns 7-5 
i 6-8 at the 3-rd floor, we have:

 (31)

where 7,5-6,8 is the MCP transfer coefficient (TCMCP) from cross 
section 7,5 of column 7-5 to cross sections 6,8, and 8,6 of 
column 6-8 of the 3-rd floor.
As the 3-rd floor and node 7 of the considered movable frame 
structure were chosen completely arbitrarily, it follows that the 
expression can be set for the relationship between incremental 
bending moments in cross sections of any 2 columns of the 
considered floor, for any movable frame structure with arbitrary 
number of floors and arbitrary number of spans.
If the incremental rotation ∆ϕi is set for an arbitrarily selected 
node “i” of an arbitrary k-th floor of a considered movable 
frame structure, which causes incremental bending moment 
∆Mi,j(∆ϕi) in the cross section i, j of the column i-j of k-th 
floor, then, according to expression (31), the corresponding 
incremental moments for the member ends m-n and n-m of 
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an arbitrarily selected column m-n of the k-th floor can be 
written as:

 (32)

where i,j-m,n is the MCP transfer coefficient for the transfer from 
the cross section i,j of the column i-j to cross sections m,n and 
n,m of the column m-n; here the columns i-j and m-n are the 
columns of the k-th floor of the structure.
If expression (48) is appropriately applied to cross sections 
of column 8-10 of the 4-th floor, the incremental bending 
moments of cross sections 8,10 and 10,8 of the 4-th floor can 
be written as:

 (33)

where 7,9-8,0 
is the TCMCP from the cross section 7,9 of column 

7-9 to cross sections 8,10 and 10,8 of column 8-1; at that, 
columns 7-9 and 8-10 are the columns of the 4-th floor. 
Due to incremental rotation ∆ϕ7

(1), incremental moments are 
also produced at the opposite ends of columns 7-5 and 7-9 
(connected to node 7).
If expression (15), expression (16) for cross section 5,7 of 
column 7-5, and expression (18) for the 3-rd floor, are included 
in expression (10), then the expression for incremental bending 
moment of cross section 5,7 of column 7-5, caused by 
incremental rotation ∆ϕ7

(1), can be written as:

 (34)

Division of the corresponding sides of (34) by the corresponding 
sides of expression (19) for ∆M7,5(∆ϕ7

(1))
 
yields:

 (35)

If, in accordance with the foregoing, a definition of “transfer 
coefficient”  i,j-j,i  is introduced for transfer from the cross section 
i,j of an arbitrarily selected column i- j of an arbitrary k-th floor to 
the opposite cross section j, i then we have:

 (36)

where ki,j is the stiffness coefficient of the column i-j of the k-th floor 
and Kk is the sum of stiffness coefficients for the k-th floor; then, the 
application of expression (36) to the column 7-5 of the 3-rd floor and 
introduction of the result into the expression (35) yields: 

  (37)

where 7,5-5,7 is the TCMCP from cross section 7,5 of the column 
7-5 to the opposite cross section 5,7.
If incremental rotation ∆ϕi is set for an arbitrarily selected node “i” 
of an arbitrary k-th floor, which would cause incremental moment 
∆Mi,j(∆ϕi) at the cross section i,j of column i-j (connected to the 
node “i” at its end “i”) of the k-th floor , then, according to (37), the 
corresponding incremental moment (transferred moment) at the 
opposite end j,i of that column can be written as:

 (38)

where i,j-j,i  is the TCMCP from the cross section i,j of an 
arbitrarily selected column i-j to the opposite cross section j,i 
of that column.
By appropriate application of expression (38) to the cross 
section 9,7 of column 7-9 of the 4-th floor, the incremental 
bending moment at the cross section 9,7 of the 4-th floor can 
be written as: 

 (39)

where 7,9-9,7 is the TCMCP from the cross section 7,9 of column 
7-9 to the opposite cross section 9,7 of that column.
Finally, due to incremental rotation ∆ϕ7

(1) the corresponding 
incremental moment is also produced at the opposite end 8,7 of 
the beam 7-8 (connected to node 7). Because the incremental 
rotation ∆ϕ7

(1) does not produce rotation of the beam 7-8, but 
only its translational displacement along the horizontal line, the 
expression for the relationship between increments of bending 
moments at the ends of the beam 7-8, can be written as:

 (40)

where 7,8-8,7 is the TCMCP from one end of the beam 7-8 to the 
other, which has a constant value of 0.5, just like in TCP. 
In general, the value of TCMCP for any beam m-n of any 
movable frame structure has the same value as the value of the 
TCP transfer coefficient “p”:

 (41)

and the value of the MCP moment transferred to the opposite 
end of the beam is the same as the corresponding TCP value:

 (42)

where ∆ϕm is the increment of the angle of rotation of node “m” 
to which the beam m-n is connected. 
It is obvious that incremental rotation ∆ϕ7

(1)does not produce 
increments of moments at cross sections of the 1-st, 2-nd 
and 5-th floors of the considered frame structure (Figure 3). 
This conclusion results from the application of expression (10) 
to all columns of the 1-st, 2-nd and 5-th floors, and from the 
application of expression (11) to all beams of the 1-st, 2-nd 
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and 5-th floors, taking at that into account expression (15) and 
the fact that for each arbitrarily chosen member i-j of the 1-st, 
2-nd and 5-th floors the corresponding values of internal forces 
caused by ∆ϕ7

(1) are: 

 (43)

According to definitions from the TCP, the increments of 
moments in expressions (32), (38) and (42) of the MCP are also 
named transferred moments. 

3.4. Steps of modified Cross procedure

Once we have defined MCP parameters (according to TCP 
definitions): MCP fixed-end moments (expressions (10) and 
(11)), MCP coefficients i,j ( expressions: (21) for columns and 
(23) for beams ), MCP division coefficients ( expression (25)), 
MCP transfer coefficients (expressions: (30) and (36) for columns 
and (41) for beams), the MCP can be performed for an arbitrary 
translationally movable structure with an arbitrary number of 
floors and spans. The MCP is performed in exactly the same way 
as the TCP, successively, node by node, where in each step of the 
procedure all nodes are in an equilibrium state. The remaining 
unbalanced moments for each step of iteration are the so-called 
transferred moments from neighbouring nodes of the structure, 
which will be balanced in the next step of the iteration.
As already shown, the main difference between the MCP and 
TCP lies in the expressions for: fixed-end moments, coefficients 

i,j, division and transfer coefficients, where the contribution of 
translational displacements is built into the MCP. 
In TCP, transferred moments are realised only at the opposite 
ends of the members connected to the node with a given 
incremental rotation, while in MCP, transferred moments 
appear at the opposite ends of connected beams and at the 
ends of all columns of the k-th and (k+1)-th floor (if the k-th 
floor is not the last floor of the structure), where the considered 
node with a given incremental rotation belongs to the k-th floor.
The MCP approximation of the bending moment at the end “i“ 
of an arbitrarily selected column i-j of an arbitrary k-th floor can 
be written as: 

  (44)

where: Mi
(r)  is the overall unbalanced moment for node “i” of 

the r-th iteration step, Mm
(r) is the overall unbalanced moment of 

the r-th iteration step for an arbitrary node “m” of an arbitrary 
column m-n of the k-th floor , and   is the 
sum of moments transferred from cross sections of all columns 
of the k-th floor to the cross section i,j (summarized by all 
iteration steps, with (s-1)-th step as the last step ).
In the s-th step, the approximation of the bending moment at 
the end of an arbitrary beam u-v can be expressed as:

 (45)

where the meaning of individual members of expression (45) is 
in accordance with the meaning of the corresponding members 
of expression (1) for TCP.
Just as in TCP, the MCP iteration will end when the convergence 
criteria according to expression (3) are established.

3.5. Domain of application of MCP

The procedure shown in the paper is suitable for the design of 
multi-span and multi-floor in-plane frame structures without 
sloping members of the structure, where there are no vertical 
translational displacement projections of nodes. In structures 
with sloping beams or sloping columns, an external load would 
cause rotation of beams, which would make expressions for the 
division and transfer coefficients more complicated. However, 
this is beyond the scope of this paper. 
Only the coefficients for the case of vertical columns of the 1-st 
floor, without members with hinged ends, are shown in this 
paper.
It is however obvious that MCP can very easily be extended to 
structures with different heights of columns at the 1-st floor, 
with hinged ends of any member of the structure, and with any 
combination of supports of the structure. In sections 2.3 and 2.4 
of the paper, known expressions should be used for stiffness 
coefficients for fixed-end–hinged-end members (derived by 
applying the static condensation technique) and, for the case of 
different column heights, use should be made of the fact that 
all rotation angles of the 1-st floor columns-as displacements 
of all nodes of the 1-st floor are equal-can be written via one 
single parameter: for example, via rotation angle of the first 
column of the 1-st floor.
All these expressions have been derived by the author but, due 
to space limitations, they are not presented in this text. These 
expressions will be used in a future publication. 
The procedure shown in this paper is suitable for creating a 
smaller computer program in which all steps of the procedure 
(that are repetitive in nature) will be performed automatically. 
Within such a computer program, due to an increased number 
of MCP transferred moments compared to the number of TCP 
transferred moments (the moments are transferred to cross 
sections of all floor columns to which the considered node 
belongs, and to cross sections of all floor columns above), there 
is no loss of clarity and efficiency of the procedure in relation to 
an increase in the number of floors or the number of spans of 
the structure.

4. Numerical example

4.1. Design using MCP

An example of a two-floor movable in-plane structure for which 
a moment diagram will be determined using MCP is shown in 
Figure 5. Cross sections of all members are rectangular, and 
the width and height (b/h) values of individual members are 
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presented in Figure 5. The modulus of elasticity of the material 
of all members is assumed equal to E = 3·107 kN/m2.
Stiffness coefficient values of members of the structure under 
study are:

k7,8 = k4,5 = 15625 [kNm], k5,6 = 18750 [kNm], k4,7 = k5,8 = 6750 [kNm]

k4,1 = k6,3 = 5062.5 [kNm], k5,2 = 16000 [kNm]

Stiffness-coefficient sums for each floor are:

K1 = k4,1 + k5,2 + k6,3 = 26125 [kNm], K2 = k4,7 + k5,8 = 13500 [kNm]

The values of the TCP fixed-end moments in the cross sections 
of all members of the structure are obtained by applying well 
known formulas of the statics of in-plane structures:

7,8 = 4,5 = 18.00 [kNm], 8,7 = 5,4 = -18.00 [kNm]

5,6 = 12.50 [kNm], 6,5 = -12.50 [kNm]

5,8 = -18.75 [kNm], 8,5 = 18.75 [kNm]

while these TCP values for all other members that are not 
subjected to load are equal to 0.
The values of TCP shear forces in cross sections of all columns 
in the structure are obtained by applying known formulas of the 
statics of in-plane structures: 

5,8 = -25,00 [kN], 8,5 = 25,00 [kN]

while these TCP values for all other members that are not 
subjected to load are equal to 0. 

According to the previously presented MCP definitions, the sum 
of horizontal forces for each floor is: 

H1 = P1 + P2 - P3 = 50.00 [kN], H2 = P1 = 60 [kN]

while the sum of shear forces for each floor is: 

1 = 4,1+ 5,2+ 6,3 = 0 [kN], 2 = 7,4+ 8,5 = 25.00 [kN]

The expression (11) can be used to obtain the values of the MCP 
fixed-end moments in cross sections of the beams, which are 
equal to the values obtained for the TCP fixed-end moments 
of beams. 
The expression (10) can be used to obtain values of the MCP 
fixed-end moments in cross sections of the columns of the 
structure:

1,4 = 4,1 = 3,6 = 6,3 = 19.378 [kNm],

2,5 = 5,2 = 61.244 [kNm]

4,7 = 7,4 = 26.250 [kNm], 8,5 = 45.000 [kNm], 5,8 = 7.500 [kNm]

MCP division coefficient values for the nodes of the structure 
can be obtained by appropriate use of expressions (21), (23) and 
(25): 

for node 4: 4,7 = -0.1745, 4,1 = -0.1790, 4,5 = -0.6465

for node 5: 5,2 = -0.1831, 5,8 = -0.0893, 5,4 = -0,3307,  5,6 = -0.3969

for node 6: 6,3 = -0.1875, 6,5 = -0.8125

for node 7: 7,8 = -0.7874, 7,4 = -0.2126

for node 8: 8,7 = -0.7874, 8,5 = -0.2126

No static condensation technique was 
used for column 6-3, for which node 3 is 
its hinged support. In the basic system, 
node 3 is fixed against rotation and, in the 
iterative procedure, this node is subjected 
to load by such amount of incremental 
rotation that it causes disappearance 
of bending moment in the cross section 
3,6. Accordingly, since node 3 has only 
one cross-section 3,6, the MCP division 
coefficient for that node is obviously equal 
to 0:  3,6 = -1,0.
The MCP transfer coefficient  values are 
obtained by using expressions (32) and 
(36) for the cross sections of the columns:

4,1-1,4 = 6,3-3,6 = 0,4150, 4,1-5,2 = 6,3-5,2 = -0.5374Figure 5. Two-floor frame structure for numerical example
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4,1-6,3 = 6,3-4,1 = -0.1700

5,2-2,5 = 0,0752, 5,2-1,4 = 5,2-6,3 = -0.2688

4,7-7,4 = 8,5-5,8 = 0.2000

4,7-5,8 = -0.6000

8,5-7,4 = -0.6000 

The previously shown property of transfer coefficients is used: 

i,j-j,i = j,i-i,j from (36) and i,j-m,n = i,j-n,m i i,j-m,n = j,i-m.n from (30).

According to expression (57), the values of the MCP transfer 
coefficients for cross sections of all beams of the frame structure are 
equal to the corresponding TCP transfer coefficients, and amount to: 
0.5000.
The calculation scheme of the MCP iterative procedure is shown 
in Figure 6. The calculation scheme is created in accordance with 
the usual form of TCP calculation schemes as used in engineering 
practice in the Republic of Croatia, and also in accordance with the 
schemes depicted in [8]. The iteration was performed according to 
the Gauss-Seidel procedure, in which the transferred moments are 
immediately introduced into calculation in the ongoing iteration step.
A “square“ (with the values of the MCP division coefficients of that 
node) is drawn for each node of the structure, and the values of the 
initial MCP fixed-end moments are entered below cross sections of 

each member of the structure. In the scheme shown in Figure 6, the 
MCP transfer coefficients are also entered accordingly.
The results of the MCP iterative procedure presented in the paper 
are rounded to four significant digits. 
The MCP iterative procedure begins by balancing the moments 
in node 5. The initial unbalanced moment of node 5 is the sum of 
MCP fixed-end moments in the cross sections of node 5, whose 
magnitude is: +63.2441 kNm. By multiplying this unbalanced 
moment by division coefficients for node 5, the balancing increments 
of moments are obtained: for a cross section 5,2: -11.5800 kNm, for 
a cross section 5,4: -20.9148 kNm, for a cross section 5,8 -5.6477 
kNm, for a cross section 5,6: -25.1015 kNm. By subsequently 
multiplying these distributed increments of node 5 moments by the 
corresponding MCP transfer coefficients, transferred increments 
of moments are obtained as follows: for cross section 2,5: -0.8708 
kNm, for cross sections 4,1 and 1,4: +3.1127 kNm, for cross sections 
6,3 and 3,6: +3.1127 kNm, for cross section 4,5: -10.4574 kNm, for 
cross section 6,5: -12.5508 kNm, for cross section 8,5: -1.1294, 
kNm, and for cross sections 4,7 and 7,4: +3.3866 kNm.
The unbalanced moment of node 8 is the sum of MCP fixed-end 
moments in cross sections of that node and transferred moments 
from node 5, and its value is: +25.8704 kNm. If this unbalanced 
moment is multiplied by division coefficients for node 8, balancing 
increments of moments are obtained as follows: for cross section 
8,5: -5.5000 kNm, and for cross section 8,7: -20.3704 kNm. By 
subsequently multiplying these distributed increments of the 
node 8 moments by the corresponding MCP transfer coefficients, 
transferred increments of moments are obtained as follows: for 

cross section 7,8: -10.1852 kNm, for cross 
section 5,8: -1.1000 kNm, and for cross 
sections 4,7 and 7,4: -3.3000 kNm.
The unbalanced moment of node 7 is also 
calculated. This moment is equal to the sum 
of MCP fixed-end moments in cross sections 
of that node, and previously transferred 
moments from nodes 5 and 8, and it amounts 
to: 40.7534 kNm. By multiplying this 
unbalanced moment by division coefficients 
for node 7, balancing increments of moments 
are obtained as follows: for cross section 7,8: 
-32.0893 kNm, and for cross section 7,4: 
-8.6641 kNm. By subsequently multiplying 
these distributed increments of node 7 
moments by the corresponding MCP transfer 
coefficients, the following transferred 
increments of moments are obtained: for 
cross section 8,7: -16.0445 kNm, for cross 
section 4,7: -1.7328 kNm, for cross sections. 
5,8 and 8,5: +5.1984 kNm.
The unbalanced moment of node 4 is also 
calculated. It is equal to the sum of MCP fixed-
end moments in cross sections of that node 
and previously transferred moments from 
nodes 5, 7 and 8, and it amounts to: +61.2376 
kNm. By multiplying this unbalanced moment Figure 6. Calculation scheme of MCP iterative procedure for numerical example 
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by division coefficients for node 4, the following balancing increments 
of moments are obtained: for cross section 4,5: -39.5901 kNm, for 
cross section 4,1: -10.9618 kNm, and for cross section 4,7: -10.6862 
kNm. By subsequently multiplying these distributed increments of 
node 4 moments by the corresponding MCP transfer coefficients, 
the following transferred increments of moments are obtained: for 
cross section 5,4: -19.7955 kNm, for cross section 1,4: -4.5491 
kNm, for cross sections 5,2 and 2,5: +5.8909 kNm, for cross sections 
3,6 and 6,3: +1.8635 kNm, for cross section 7,4: -2.1372 kNm, and 
for cross sections 5,8 and 8,5: +6.41172 kNm.
The unbalanced moment of node 6, equal to the sum of MCP 
fixed-end moments in cross sections of that node and previously 
transferred moments from nodes 4 and 5, is also calculated. By 
multiplying this unbalanced moment amounting to: -0.6969 kNm by 
division coefficients for node 4, the following balancing increments of 
moments are obtained: for cross section 6,5: +0.56596 kNm, and for 
cross section 6,3: +0.13061 kNm. By subsequently multiplying these 
distributed increments of node 6 moments by the corresponding 
MCP transfer coefficients, the following transferred increments 
of moments are obtained: for cross section 5,6: +0.28298 kNm, 
for cross section 3,6: +0.0542 kNm, for cross sections 1,4 and 4,1: 
-0.0222 kNm, and for cross sections 2,5 and 5,2: -0.070188 kNm.
The moment of the supporting node 3, equal to the sum of MCP 
fixed-end moments in the cross section of that node and previously 
transferred moments from nodes 4, 5 and 6, is also calculated. 
Multiplying this supporting moment amounting to +24.4084 kNm by 
the division coefficient for node 3, amounting to -1.0, the increment 
of supporting moment for the cross section 3,6 is obtained: -24.4084 
kNm. Thus the total supporting moment at that hinged support 3 
assumes the value of 0. By subsequently multiplying this distributed 
increment of node 3 moment by the corresponding MCP transfer 
coefficients, the following transferred increments of moments are 
obtained: for cross section 6,3: -10.1295 kNm, for cross sections 
1,4 and 4,1: +4.1494 kNm, and for cross sections 2,5 and 5,2: 
+13.11707 kNm.
This last action completes the first round of the iterative procedure. 
All values of distributed and transferred moments of the first iterative 
round are highlighted in bold letter type in Figure 5. The second 
iteration round begins in the same way as the first one, by balancing 
the remaining unbalanced moments of node 5 from the first iterative 
round. The total unbalanced moment for node 5 for the second 
iterative round is the sum of all transferred moments from nodes 
3,4,6,7 and 8, from the first round. By multiplying this unbalanced 
moment by division coefficients for node 5, balancing increments of 
moments for the second iterative round are obtained. Unbalanced 
moments in other nodes of the structure will be balanced in the 
same order as in the first iterative round. Unbalanced moments are 
the sum of the moments transferred from the previous iterative 
round. The procedure in the second iterative round, including the 
node balancing order, is completely identical to the first iterative 
round. The same applies to all other subsequent iterative rounds.
The procedure ends with the iterative round for which the values of 
all transferred moments are less than some predefined value.
In the numerical example shown, this predefined value is 0.1000 
kNm, and so the procedure ends with the 5-th round. 

Final moments for each cross section of the structure are 
obtained as the sum of all distributed and all transferred 
moments of all iterative rounds, without unbalanced 
transferred moments of the last iterative round, which are 
neglected. Therefore, the final values of the moments are 
obtained by simply summing all the values of the column that 
corresponds to the observed cross section in the calculation 
scheme (Figure 6). 
The final values of the moments, rounded to the fourth decimal 
place, shown in the diagram in Figure 7, are obtained by summing 
values obtained from the calculation scheme (Figure 6).

Figure 7. M diagram for numerical example solved according to MCP 

4.2.  Analysis by TCP for translationally movable 
structures 

To enable comparison with MCP, the solution of the same 
numerical example was performed by TCP for translationally 
movable structures. 
The TCP will be conducted using steps described in [8], Section 
7.1.2. However, some corresponding calculation parameters 
are marked differently. The results are rounded to the fourth 
decimal place, just like in MCP.
A restrained system in which all nodal rotations and all 
independent translational displacements are prevented is 
created (Figure 8): displacement of beam line of the 1-st floor u1 
and displacement of beam line of the 2-nd floor u2.

Figure 8. Restrained system for numerical example according to TCP 
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Using known expressions, fixed-end moments are obtained 
at all cross sections of the restrained system: . For all 
cross sections of the restrained structure, these moments 
are identical to the moments given in Section 3.1.
Using the already obtained stiffness coefficient values of 
members of the structure, as presented in [8], the values of TCP 
division coefficients are obtained:

for node 4: m4,7 = -0.2460, m4,1 = -0,1845, m4,5 = -0.5695

for node 5:  m5,2 = -0.2801, m5,8 = -0.1182, m5,4 = -0.2735, m5,6 = -0.3282

for node 6: m6,3 = -0.1684, m6,5 = -0.8316

for node 7: m7,8 = -0,6983, m7,4 = -0.3017

for node 8: m8,4 = -0.6983, m8,5 = -0.3017

In doing so, the expressions derived using static condensation 
technique are used for member 3-6, provided that the 
supporting moment in node 3 is equal to 0.

Using TCP (Figure 9), the moments in cross sections of the 
restrained structure, caused by external load, are obtained: 
Mi,j(0). The values of these moments are indicated in Figure 9 
using bold letter type.
A known expression is used for the shear force value at the ends 
of the member:

where Ti,j
(0) is the value of shear force for a simply supported 

beam caused by external load, and hi,j is the length of the 
member i – j ( in this case the height of the column i – j); shear 
force values Ti,j(0) in the cross sections of the columns of the 
restrained system are obtained from values of the moments 
Mi,j(0).
Beam lines of individual floors are isolated by cutting all columns 
of a particular floor and the floor above it, and by releasing shear 
forces of the columns. Restraining force values of the restrained 
system are obtained by applying equilibrium equations for the 
horizontal forces acting on the isolated beam line (Figure 8): for 
the 1-st floor: R1(0) = P2 – T4,1(0) – T5,2(0) – T6,3(0) + T4,7(0) + T58(0) 

= 10.4488 kN, and for the 2-nd floor: R2(0) 
= P1 – T7,4(0) – T8,5(0) = 37.8196 kN.
To determine values of previously 
prevented displacements, joints are placed 
in all nodes of the restrained system, and 
appropriate displacement schemes are 
created (Figure 10). The translational 
displacement u1 is set (Figure 10.a). 
Values of fixed-end moments Mi,j(u1), 
caused by displacement u1By, are obtained 
using kn Mi,j(u1) own expressions for fixed-
end moments at the ends of the member, 
caused by rotation of the member, and, 
in addition, using static condensation for 
member 3-6 (Figure 11).
With these values as initial values, the TCP 
is performed once again (Figure 11). IAt 
the end of iterative TCP process (Figure 11), 
the moments caused by displacement u1: 
Mi,j(u1) are obtained in cross sections of the 
restrained system, as shown in Figure 11.

Figure 10. Displacement scheme for numerical example, for displacement u1 and u2

Figure 9.  Schematic view of TCP iterative procedure for numerical example according to TCP, 
for external load 
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Figure 12. TCP iterative procedure for numerical example with translational displacement u2

Figure 11. TCP iterative procedure for numerical example with translational displacement u1
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In accordance with the case already shown for external load, the 
values of shear forces Ti,j(u1) are obtained in cross sections of 
the columns from the values of Mi,j(u1).
Just like in the case shown for external load, the values of 
restraining forces of the restrained system are obtained by 
applying equilibrium equations for horizontal forces acting on 
the isolated beam lines (the difference being that there is no 
contribution of forces P1 and P2 in the equilibrium equations): for 
the 1-st floor: R1(u1) = -30701.4866·u1, for the 2-nd floor: R2(u1) 
= 14981.8293·u1.
The translational displacement u2 is also set (Figure 10 b)). 
The values of moments mi,j(u2) caused by the displacement u2 

are shown in Figure 12. 
The TCP is performed again with these values as initial values 
(Figure 12). At the end of the iterative TCP (Figure 12), the 
moments are obtained in cross sections of the restrained 
system caused by displacement u2: Mi,j(u2). The values of these 
moments are marked with bold letter type in Figure 12.
Just as in the case shown for displacement u1, the values of 
restraining forces of the restrained system are obtained by 
applying equilibrium equations for horizontal forces acting on 
isolated beam lines: for the 1-st floor: R1(u2) = 14982.0119·u2, 
and for the 2-nd floor: R2(u2) =-13290.9937·u2.
The final values of restraining forces are obtained by summing 
all the contributions: 
Ri = Ri(0) + Ri(u1) + Ri(u2), where i = 1,2 is the numbering for floors. 
According to the fact that there are no restraints in the original 
structure, the final value of each restraining force should be 
equal to 0: Ri = 0. Using this condition, the following equations 
are obtained: 

R1 = 10.4488 – 30701.4866·u1 + 14982.0119·u2 = 0
R2 = 37.8196 + 14981.8293·u1 – 13290.9937·u2. = 0

The obtained equations represent a system of two linear 
algebraic equations with two unknows, where the unknows are 
the required values of translational displacements of beam lines 
of the structure.
By solving this system of equations, the following values of 
required displacements are obtained: u1 = 384.2629·10-5 m i u2 
= 717.6981·10-5 m.
The final values of moments in cross sections of the structure 
are obtained by summing all contributions: 
Mi,j = Mi,j(0) + Mi,j(u1) + Mi,j(u2). By including the obtained values 
of translational displacements in this expression, the final 
moments in all cross sections of the structure are obtained. 
These results are shown in Table 1 along with the results of 
other procedures. 

4.3. Comparison of procedures 

Table 1. shows the values of moments in cross sections of the 
structure from numerical example shown in Figure 5 for TCP 
and MCP. 

Table 1. Comparative results of numerical example for MCP and TCP 

The comparison of results shows that the largest relative 
deviation of MCP results from TCP results is: 0.4014 %, and 
the smallest relative deviation is: 0.0032 %, which is explained 
by the accumulation of errors in the process of rounding of 
individual results. 
A comparison of MCP and TCP reveals significant advantages of 
MCP over TCP: 1. Regardless of the number of floors and number 
of spans of the frame structure, MCP reaches final solutions 
after only one iterative procedure, while in TCP it is necessary 
to perform (n+1) individual iterative procedures (where “n“ 
is the number of floors of the structure). This fact makes the 
MCP evidently more time-efficient, more transparent, and 
more effective procedure; 2. Unlike TCP, MCP does not need to 
calculate shear forces in columns, nor to calculate restraining 
forces, thus further reducing the time required for calculation, 
and increasing efficiency compared to TCP; 3. The biggest 
advantage of MCP over TCP is the complete elimination of linear 
algebraic equations to find the values of unknown translational 
displacements, where the procedure, from start to end, remains 
in the domain of simplest mathematical procedures, reduced to 
the simplest arithmetic operations with numbers. 
If we analyse the number of steps required, i.e. the number of 
individual sub-procedures within TCP, then it follows that TCP 
contains the following sub-procedures: calculation of values of the 
fixed-end moments and values of division and transfer coefficients; 
iterative procedure performed (n+1) times; calculation of shear 
forces values of columns, performed (n+1) times; calculation of 
restraining values, performed (n+1) times; solving a system of n 
linear algebraic equations with n unknowns; using obtained values 
of translational displacements, and summation of all individual 
contributions to obtain the final solution.

Procedure
TCP MCP

Cross section

M1.4 22.4980 22.5018

M2.5 79.0219 79.0244

M4.1 15.8159 15.8219

M4.7 20.3177 20.3230

M4.5 -36.1336 -36.1449

M5.2 65.8209 65.8101

M5.8 11.4648 11.4559

M5.4 -64.4067 -64.3353

M5.6 -12.8790 -12.9307

M6.3 16.8432 16.8529

M6.5 -16.8432 -16.8529

M7.4 22.3419 22.3443

M7.8 -22.3419 -22.3443

M8.5 50.8755 50.8727

M8.7 -50.8755 -50.8727
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Therefore, for an n-floor structure, it is necessary to perform 3 
+ 3 (n + 1) single steps (sub-procedures), if the design is carried 
out using the TCP. 
On the other hand, the MCP always contains only two individual 
steps (sub-procedures): calculation of values of fixed-end 
moments and values of division and transfer coefficients; an 
iterative procedure which, regardless of the number of floors, 
is always carried out only once. The advantage of MCP over TCP 
in terms of the required number of steps (number of individual 
sub-procedures) is more than obvious. For example, for the 
frame structure with n = 5 floors: 3 + 3x(5 + 1) = 21 individual 
steps (sub-procedures) are required to implement TCP, while 
MCP (always) requires only two steps. 

5. Conclusion

As shown in the paper, MCP has significantly improved TCP in the 
design of in-plane movable structures. The basic idea of TCP to 
achieve equilibrium state by successive calculation of distributed 
and transferred moments within an iterative procedure, by 
gradually approaching the correct solution, is retained in MCP as 
well, with the exception that, unlike TCP, the equilibrium state is 
achieved on a basic system that prevents nodal rotations, but 
horizontal displacements of the nodes are not prevented (Figure 
1.b). This significant difference in the choice of the basic system 
results in completely different expressions for the division and 
transfer coefficients of MCP compared to TCP. 
In the modified procedure, the final solution is obtained after 
only one iterative process, unlike traditional procedure, in which 

the final solution is obtained by summing the results of several 
individual iterative processes. The number of required individual 
iterative processes in TCP is (n+1), where “n“ is the number 
of floors of the observed movable frame structure, so that an 
enormous saving of calculation time is obvious. In addition, 
unlike TCP, the need to solve a system of “n“ linear equations 
with “n“ unknowns (where “n“ is the number of floors of the 
frame structure) is eliminated in MCP, thus further simplifying 
the procedure.
In the light of the above, it be concluded that MCP is suitable 
as an algorithmic basis for creating smaller computer 
programs for the design of translationally movable frame 
structures, regardless of the number of spans and the 
number of floors of the frame, without the use of commercial 
computer programs.
Compared to the Csonka and Werner procedure, MCP is 
immeasurably more dominant for a wider range of frame 
structures because, unlike the Csonka and Werner procedure, 
MCP is not limited to frame structures with equal column 
heights of the first floor. There is no restriction on the necessary 
identity of the supports of the first floor columns. Also, MCP 
has no restrictions on possible existence of joints between any 
members of the frame structure. Precisely, in relation to this 
limitation of Csonka and Werner procedure, it was not possible 
to compare in this paper the presented MCP with the procedure 
of Csonka and Werner, because the numerical example contains 
a combination of fixed and hinged supports of the first floor 
columns which, as shown, can not be solved by the procedure 
of Csonka and Werner.


