Prethodno priopćenje

Primljen / Received: 21.1.2020. Ispravljen / Corrected: 20.5.2021. Prihvaćen / Accepted: 15.10.2021. Dostupno online / Available online: 10.11.2021.

Numerička analiza cikličnog jednoosnog i dvoosnog bočnog opterećenja AB stupova

Autori:

Doc.dr.sc. **Ibrahim S.I. Harba**, dipl.ing.građ. Sveučilište Al-Nahrain, Bagdad, Irak Tehnički fakultet Odjel za građevinarstvo <u>Ibrahim.S.Ibrahim@nahrainuniv.edu.iq</u>

Doc.dr.sc. Abdulkhalik J. Abdulridha, dipl.ing.građ. Sveučilište Al-Nahrain, Bagdad, Irak Tehnički fakultet Odjel za građevinarstvo Abdulkhalik.J.AbdulRidha@nahrainuniv.edu.iq Autor za korespondenciju

Ibrahim S.I. Harba, Abdulkhalik J. Abdulridha

Numerička analiza cikličnog jednoosnog i dvoosnog bočnog opterećenja AB stupova

U ovom se radu prikazuje numerička analiza konačnih elemenata koja je provedena kako bi se ispitalo ponašanje AB stupova visoke čvrstoće za slučaj dvoosnog i jednoosnog bočnog pomaka pri konstantnom uzdužnom opterećenju. Numerička analiza provedena je na 24 modela pomoću programa ABAQUS / CAE. Validacijom je utvrđena dobra podudarnost numeričkih i eksperimentalnih rezultata. U okviru parametarske studije određen je koeficijent armiranja uzdužnom armaturom, ukupna ploština spona za ovijanje (Ash) te jednoosno i dvoosno ciklično posmično opterećenje. Rezultati numeričke analize pokazuju da povećanje količine uzdužne armature u slučaju jednoosnog i dvoosnog bočnog opterećenja dovodi do znatnog povećanja maksimalnog i graničnog opterećenja stupova, progiba, broja ciklusa maksimalnog i graničnog opterećenja, te početne krutosti Ki, dok je utjecaj poprečne armature manje izražen. Otpornost stupova na opterećenja i deformacije znatno se smanjuje pri nanošenju dvoosnog cikličnog posmičnog opterećenja, u odnosu na jednoosno opterećenje. Isto tako, taj utjecaj se smanjuje s povećanjem udjela uzdužne armature (%p,) i vrijednosti Ash.

Ključne riječi:

stupovi, beton visoke čvrstoće, numerička analiza, numerička simulacija, prethodno poprečno opterećenje, jednoosno i dvoosno opterećenje

Research Paper

Ibrahim S.I. Harba, Abdulkhalik J. Abdulridha

Numerical analysis of RC columns under cyclic uniaxial and biaxial lateral load

A numerical finite element study is conducted in this paper to examine structural behaviour of high strength RC columns exposed to biaxial and uniaxial lateral displacement histories with constant axial load. The numerical analysis of 24 models was made using ABAQUS / CAE. The comparison between numerical analysis and experimental results shows good agreement through validations. The considered parametric study involves determination of the longitudinal reinforcement ratio, total cross-sectional area of confinement steel (Ash), and uniaxial and biaxial cyclic shear load. Numerical analysis results show that an increase of longitudinal reinforcement for a uniaxial and biaxial lateral historic load will significantly increase maximum and ultimate load of columns, corresponding deflections, number of cycles at maximum and ultimate loads, and initial stiffness Ki, while the effect of transverse reinforcement is less pronounced. The columns load and deformation capacity decreases significantly with application of biaxial cyclic shear load, compared with uniaxial load. Also, this effect reduces with an increase in longitudinal reinforcement ratio (% ρ) and Ash.

Key words:

columns, high-strength concrete, numerical analysis, numerical simulation, transverse historic load, uniaxial and biaxial load

1. Uvod

Ovo istraživanje provodi se u okviru teme seizmičkog ponašanja AB konstrukcija, vrlo aktualne u posljednjih nekoliko desetljeća, pri čemu se osnovni naglasak stavlja na ponašanje AB stupova opterećenih uzdužnim i dvoosnim horizontalnim opterećenjem [1, 2]. Odziv konstrukcija zabilježen tijekom priješnjih potresa pokazuje da do otkazivanja stupova najčešće dolazi zbog velikih posmičnih naprezanja, neodgovarajuće kvalitete betona te dvosmjernog opterećivanja [3]. Poznato je da do oštećenja AB elemenata tijekom potresa dolazi zbog višeosnih pobuda. Kao što je poznato iz interakcijskih dijagrama, krajnji moment i moment pri popuštanju raste s povećanjem uzdužnog opterećenja i do postizanja ravnotežnog stanja [4, 5].

Tijekom potresa, promjene uzdužnog opterećenja mogu dovesti do promjene graničnih vrijednosti pomaka, nosivosti i krutosti uz promjenu svih histereznih svojstava AB elemenata. Do tih promjena dolazi zbog vertikalne komponente seizmičkog opterećenja, ili zbog opterećenja koje se javlja na dnu. Kod vanjskih stupova AB okvira, uzdužno se opterećenje smanjuje na jednoj strani a istovremeno se povećava na suprotnoj strani, što je uzrokovano momentom prevrtanja. Može se zapravo reći da na neelastični odziv stupova bitno utječu varijacije uzduže sile tijekom ciklusa odziva [6-9].

Općenito uzevši, ciklus dvoosnog poprečnog opterećenja utječe na pad nosivosti i krutosti više nego što je to slučaj pri jednosnom opterećenju. Osim toga, mehanizam sloma AB stupova ovisi i o obrascu opterećivanja te u velikoj mjeri utječe na duktilnost stupova i na njihovu sposobnost raspršivanja seizmičke energije [10-14]. Intenzitet uzdužnog opterećenja malo utječe na drugi ciklus krivulje anvelope opterećenjapomaka uzorka pri varijabilnom ili konstantnom uzdužnom opterećenju s jednosmjernim horizontalnim opterećenjem [15]. U nekim se studijama navodi da se duktilnost izražena preko pomaka stupova smanjuje usporedo s povećanjem tlačne čvrstoće betona. S druge strane, utjecaj betona visoke čvrstoće (eng. *high strength concrete* - HSC) na duktilnost (granicu pomaka) stupova još uvijek nije razjašnjen [16].

Učinkovitost ovijanja i granične deformacije stupova smanjuje se s povećanjem čvrstoće betona. Uzorci s koeficijentom armiranja poprečnom armaturom od 1,1 % nisu dovoljno duktilni, a ponašanje uzoraka s 3,1 % poprečne armature smatra se zadovoljavajućim [17].

Poprečna armatura i iznos tlačnog opterećenja uvelike utječu na duktilnost (granicu pomaka) stupova izrađenih od betona visoke

čvrstoće [18-20]. Postoji snažna korelacija između graničnog pomaka i uzdužnog opterećenja kod uzoraka s pomacima većim od 4 % pri uzdužnom opterećenju od 0,3fcAg. Pri višim vrijednostima uzdužnog opterećenja, uzorci su otkazivali uslijed djelovanja posmične sile. Kod stupova podvrgnutih uzdužnom opterećenju većem od balansiranog opterećenja, za postizanje duktilnog ponašanja treba se predvidjeti velika količina poprečne armature [21].

U ovom se radu provodi numerička analiza 24 modela pomoću programa ABAQUS, a koristi se napredni model "plastičnosti oštećenja betona" (eng. *concrete damage plasticity* - CDP). Numerički je model potvrđen uspoređivanjem s eksperimentalnim ispitivanjima [21], i to već u prvom koraku prije povođenja parametarske studije za izradu numerički potvrđenog modela. Za određivanje ponašanja AB stupova visoke čvrstoće, u ovom se radu analiziraju sljedeći parametri: udio uzdužne armature, ukupna ploština armature za ovijanje (Ash) te jednoosno i dvoosno ciklično posmično opterećenje.

2. Značenje istraživanja

Do sada je provedeno više eksperimentalnih istraživanja o ponašanju stupova pri bočnom opterećenju. Međutim, samo se u nekima od njih naglasak stavlja na utjecaj uzdužne i poprečne armature, s mogućnošću jednoosnog i dvoosnog bočnog pomaka, na otpornost stupova izrađenih od betona visoke čvrstoće pri konstantnom uzdužnom opterećenju.

3. Eksperimentalni rezultati korišteni u istraživanju

Eksperimentalne rezultate korištene u validaciji ove numeričke analize prikazali su Matamoros i Sozen [21]. Ispitano je osam uzoraka AB stupova izrađenih s betonom normalne i visoke čvrstoće. U okviru eksperimentalnog programa stupovi su podvrgnuti ispitivanju s promjenama smjera posmika, pri čemu su osnovne varijable bile uzdužno opterećenje, čvrstoća betona i način unosa (zapis) opterećenja. Dimenzije uzoraka i raspored armature prikazani su na slici 1. Mehanička svojstva betona i armature prikazana su u tablicama 1. i 2. Osim toga, u svakom je smjeru pomak povećavan za 6,5 (mm) u svakom drugom ciklusu, kao što se to vidi na slici 2. U ovom je radu uzorak C70-20 korišten kao kontrolni uzorak za potrebe provjere (validacije). Numerička analiza najprije je validirana s eksperimentalnim rezultatima pomoću programa ABAQUS [22], nakon čega je provedeno parametarsko istraživanje.

Tablica	1.	Mehanička	svojstva	betona
---------	----	-----------	----------	--------

Uzorak	Uzdužno	Uzdužno	Ciljna tlačna	Srednja tlačna	Vlačna čvrstoća	Modul elastičnosti
	opterećenje [kN]	naprezanje [MPa]	čvrstoća [MPa]	čvrstoća [MPa]	[MPa]	[GPa]
C70-20	568	14	70	66	6,4	35,9

Tablica 2. Mehanička svojstva armature

Uzorak	Promjer armature	Granica popuštanja [MPa]	Čvrstoća [MPa]	
C70-20	5	585	745	

Građevinar 10/2021

Slika 1. a) Dimenzije uzorka; b) Raspored armature [21]

Slika 2. Promjene pomaka u svakom smjeru [21]

4. Numeričko modeliranje

Numeričko modeliranje provedeno je pomoću programa ABAQUS [22]. Za razradu AB stupa korišten je nelinearni trodimenzionalni model konačnih elemenata sa svojstvima materijala. Eksperimentalni podaci o cikličnom ponašanju, dobiveni u prethodnim ispitivanjima [21], korišteni su u programu ABAQUS kao ulazni podaci. Slijedi prikaz analize konstitutivnog modela betona i armature, vrste elemenata i graničnih uvjeta primijenjenih u numeričkom modeliranju.

4.1. Konstitutivni model betona

Nelinearno konstitutivno ponašanje betona modelirano je pomoću modela "plastičnosti oštećenja betona" (CDP) kako bi se definiralo ciklično i monotono ponašanje betona. Model

CDP definiran je s pet parametara plastičnosti i krivuljama naprezanja-deformacije betona u tlaku i vlaku [22, 23] kao što je to prikazano u tablici 3. Carreira i Chu [24] predložili su 1985. godine izraz koji je usvojen za određivanje radnog dijagrama betona pri tlačnom opterećenju. Ponašanje betona u vlaku smatra se linearnoelastičnim do dosezanja jednoosne vlačne čvrstoće, kada dolazi do otvaranja pukotina u betonu. U ovom je radu usvojen obrazac ponašanja betona pri vlačnom opterećenju što predlaže Hordijk [25].

Parametar	Opis	Vrijednost					
Ψ	ψ Kut dilatancije						
е	Ekscentričnost potencijala tečenja	0,1					
σb0/σc0	Odnos početne dvoosne tlačne granice popuštanja i početne jednoosne tlačne granice popuštanja	1,16					
Кс	Koeficijent oblika devijatorskog presjeka	0,667					
μ	Parametar viskoznosti	0,001					

4.2. Konstitutivni model armature

Konstitutivni model armature korišten je za prikladno simuliranje ponašanja armature tijekom obrata cikličnih opterećenja jer se granica popuštanja smanjuje s povećanjem broja ciklusa opterećenja u smjeru plastične deformacije. Model je također korišten za definiranje utjecaja očvršćavanja i omekšavanja armature. Smatra se da obrazac ponašanja uključuje i bilinearno kinematičko očvršćavanje koje se povezuje s Bauschingerovim efektom [26-28]. U ovom se istraživanju ponašanje uzdužne i poprečne armature simulira pomoću modela koji predlažu Ucak i Tsopelas [29]. Kako bi se povećala preciznost pri određivanju ponašanja, ulazni podaci mjereni su u odnosu na rezultate vlačnog ispitivanja armature koji se razmatraju u validiranom eksperimentalnom ispitivanju [21].

4.3. Element, opterećenje i rubni uvjeti

U ABAQUS-u je beton modeliran pomoću elemenata tipa C3D8R, a uzdužna i poprečna armatura pomoću elemenata tipa T3D2. Elementi armature ugrađeni su u betonske elemente kako bi se simuliralo prianjanje armature tj. uzajamna veza između betona i armature. Komplet čeličnih ploča korišten je na mjestu nanošenja opterećenja i na osloncima kako bi se izbjeglo lokalno otkazivanje i koncentracija naprezanja na površini na kojoj dolazi do opterećenja AB stupa te na osloncima (slika 3.).

Slika 3. a) Detalji armature i čeličnih ploča; b) detalj unosa jednoosnog opterećenja; c) detalj unosa dvoosnog opterećenja

U analizi su korištene različite veličine mreže konačnih elemenata, tj. 45 mm, 40 mm i 35 mm, kako bi se izbjegao problem konvergencije.

Nakon usporedbe s relevantnim eksperimentalnim rezultatima, ustanovljeno je da su rezultati postignuti s elementima veličine 35 mm precizni. Kako bi se simulacija uskladila sa stvarnim ispitivanjima, svi čvorovi na plohama koje se nalaze na vrhu i dnu središnjeg ogranka potpuno su pridržani, tj. postignuto je upeto oslanjanje. Konstantno uzdužno opterećenje modelirano je kao tlačni pritisak na čeličnu ploču na čelu stupa u smjeru x.

Jednoosno je opterećenje simulirano nanošenjem jednoosnog cikličnog opterećenja pomakom u smjerovima -Y i +Y, kako je to prikazano na slici 3.b. Dvoosno ciklično opterećenje pomakom postignuto je nanošenjem opterećenja u smjerovima -Y i +Z, tj. u smjerovima +Y i -Z, kako je to prikazano na slici 3.c. Vrijednosti pomaka u oba smjera prikazane su na slici 2.

Istovremeno je naneseno kontrolirano poprečno ciklično opterećenje na bazi amplitude i to na slobodan kraj stupa u smjeru Y, kako je to prikazano na slici 4., a radi se o istom modelu koji je korišten u eksperimentalnom postupku [21].

Slika 4. Mreža uzorka: a) ciklično jednoosno opterećenje pomakom; b) ciklično dvoosno opterećenje pomakom

5. Validacija numeričkog modeliranja

Usporedbom histereze opterećenja-progiba dobivene eksperimentalnim ispitivanjem uzorka C70-20 [21] i uzorka dobivenog numeričkim modeliranjem konačnih elemenata (C1) utvrđena je dobra podudarnost s eksperimentalnim rezultatima (vidi sliku 5.). U tablici 4. prikazano je granično ciklično posmično opterećenje uzorka stupa dobiveno numeričkim modeliranjem, s odgovarajućim graničnim progibom i s početnom krutošću Ki, gdje se također može uočiti dobra podudarnost u usporedbi s vrijednostima dobivenima u eksperimentalnoj analizi [21], pri čemu prihvatljiva pogreška iznosi redom 3 %, 4,2 % i -2 %. Na slici 6. prikazana je raspodjela savojnih pukotina utvrđena na temelju eksperimentalne analize, te oštećenja betona (plastične deformacije) koja su zabilježena u numeričkom modelu. Plastična deformacija koncentrirana je na dnu uzorka stupa, što odgovara savojnim

Opis	Oznaka uzorka	Nosivost na poprečnu silu [kN]	Krajnji progib [mm]	Početna krutost Ki [kN/mm]
Eksperimentalni rezultati	C70-20	51,68	38,06	11,502
Numerički rezultati	C1	53,28	39,74	11,482
Postotak pogreške	-	+3,1	+4,4	-2

Tablica 4. Eksperimentalni i numerički rezultati

pukotinama koje su se pojavile na ispitanom uzorku C70-20 [21]. Validacijom eksperimentalnih rezultata i numeričkog modeliranja utvrđena je preciznost modela materijala i numeričkog postupka u simuliranju ponašanja HSC stupova podvrgnutih jednoosnom opterećenju pomakom sa stalnim uzdužnim opterećenjem.

Tablica 5. Podaci o numeričkim uzorcima

Slika 6. Eksperimentalni i numerički podaci o oštećenju jednoosno opterećenih uzoraka s poprečnom armaturom promjera10 mm i s koeficijentom armiranja uzdužnom armaturom od ρ = 0,02

Br.	Oznaka uzorka	Koeficijent armiranja uzdužnom armaturom (ρ ₁) [%]	*Ash [mm²]	Bočno posmično opterećenje	Promjer spona [mm]
1	**C1	0,02	142,96	Jednoosno	Ø 10
2	C2	0,02	254,352	Jednoosno	Ø 12
3	C3	0,02	377,17	Jednoosno	Ø 16
4	C4	0,04	142,96	Jednoosno	Ø 10
5	C5	0,04	254,352	Jednoosno	Ø 12
6	C6	0,04	377,17	Jednoosno	Ø 16
7	С7	0,06	142,96	Jednoosno	Ø 10
8	C8	0,06	254,352	Jednoosno	Ø 12
9	С9	0,06	377,17	Jednoosno	Ø 16
10	C10	0,08	142,96	Jednoosno	Ø 10
11	C11	0,08	254,352	Jednoosno	Ø 12
* Ash = ι	ukupna ploština armatur	e za ovijanje unutar jednog razmaka s	pona, **C1 = kontrolni	uzorak	

Br.	Oznaka uzorka	Koeficijent armiranja uzdužnom armaturom (ρ _I) [%]	*Ash [mm²]	Bočno posmično opterećenje	Promjer spona [mm]
12	C12	0,08	377,17	Jednoosno	Ø 16
13	C13	0,02	142,96	Dvoosno	Ø 10
14	C14	0,02	254,352	Dvoosno	Ø 12
15	C15	0,02	377,17	Dvoosno	Ø 16
16	C16	0,04	142,96	Dvoosno	Ø 10
17	C17	0,04	254,352	Dvoosno	Ø 12
18	C18	0,04	377,17	Dvoosno	Ø 16
19	C19	0,06	142,96	Dvoosno	Ø 10
20	C20	0,06	254,352	Dvoosno	Ø 12
21	C21	0,06	377,17	Dvoosno	Ø 16
22	C22	0,08	142,96	Dvoosno	Ø 10
23	C23	0,08	254,352	Dvoosno	Ø 12
24	C24	0,08	377,17	Dvoosno	Ø 16
* Ach – I	Juliunna pločtina armatuj	ro za ovijanjo unutar jodnog razmaka c	popa **C1 - kontrolni	uzorak	

Tablica 5. Podaci o numeričkim uzorcima - nastavak

* Ash = ukupna ploština armature za ovijanje unutar jednog razmaka spona, **C1 = kontrolni uzora

6. Numerička parametarska analiza

7. Numerički rezultati

U ovom je istraživanju kontrolni numerički uzorak C1 definiran pomoću četiri parametra. Ti parametri su: koeficijent armiranja uzdužnom armaturom, ukupna ploština armature za ovijanje (Ash) te jednoosno i dvoosno ciklično posmično opterećenje. Podaci o pomaku korišteni za jednoosno i dvoosno ciklično posmično opterećenje isti su kao i podaci već prikazani na slici 2. Podaci o numeričkim uzorcima prikazani su u tablici 5. Svi uzorci podvrgnuti su konstantnom uzdužnom opterećenju jednakom onom koje je korišteno za eksperimentalni uzorak C70-20 [21]. Numerički rezultati prikazani su pomoću modela konačnih elemenata na 24 uzorka, a prema parametarskoj studiji koja se spominje u prethodnoj točki. Histerezne krivulje opterećenja i progiba prikazane su na slikama od 7. do 12., a podaci dobiveni iz krivulja sažeto su prikazani u tablici 6. Oštećenja betona (plastične deformacije) prikazana su na slikama od 13. do 18. Usporedba rezultata prikazana je u tablicama 7. i 8. te na slikama od 19. do 22.

Uzorak	ρ	Ash [mm²]	Promjer spona [mm]	Ukupan broj ciklusa	Maksimalno opterećenje [kN]	Progib pri maksimalnom opterećenju [mm]	Ciklus pri maksimalnom opterećenju	Krajnje opterećenje [kN]	Krajnji progib [mm]	Početna krutost Ki [kN/mm]
C1	0,02	142,96	Ø 10	21	106,02	25,6	9	53,28	39,74	11,482
C2	0,02	254,352	Ø 12	27	109,0	25,83	9	92,04	52,1	11,684
C3	0,02	377,17	Ø 16	30	113,67	25,9	9	94,21	58,27	11,760
C4	0,04	142,96	Ø 10	23	137,57	25,9	9	123,4	48,33	13,354
C5	0,04	254,352	Ø 12	27	140,43	26,2	9	132,04	55,02	13,405
C6	0,04	377,17	Ø 16	27	144,53	26,22	9	135,07	54,88	13,506
C7	0,06	142,96	Ø 10	27	154,01	26,8	10	163,02	53,85	15,582
C8	0,06	254,352	Ø 12	26	172,52	27,6	9	168,58	54,29	15,658
C9	0,06	377,17	Ø 16	34	179,31	28,51	29	179,2	60,35	15,747
C10	0,08	142,96	Ø 10	25	167,98	25,12	5	125,12	45,23	17,795
C11	0,08	254,352	Ø 12	27	190,5	25,2	9	169,33	51,69	17,846
C12	0,08	377,17	Ø 16	25	207,37	26,1	10	203,81	47,65	17,926
C13	0,02	142,96	Ø 10	14	60,94	18,59	5	55,33	32,06	9,601
C14	0,02	254,352	Ø 12	20	60,7	18,57	5	51,36	39,35	9,695

Tablica 6. Numerički rezultati svih uzoraka

Uzorak	ρ	Ash [mm²]	Promjer spona [mm]	Ukupan broj ciklusa	Maksimalno opterećenje [kN]	Progib pri maksimalnom opterećenju [mm]	Ciklus pri maksimalnom opterećenju	Krajnje opterećenje [kN]	Krajnji progib [mm]	Početna krutost Ki [kN/mm]
C15	0,02	377,17	Ø 16	19	61,7	18,68	6	56	39,53	9,866
C16	0,04	142,96	Ø 10	12	77,88	25,01	6	77,78	25,6	12,358
C17	0,04	254,352	Ø 12	14	79,44	25,61	9	78,53	31,68	12,458
C18	0,04	377,17	Ø 16	10	80,5	25,7,7	6	81,3	31,72	12,536
C19	0,06	142,96	Ø 10	12	92,72	25,47	9	90,4	25,5	14,210
C20	0,06	254,352	Ø 12	12	94,88	25,5	9	93,05	25,5	14,346
C21	0,06	377,17	Ø 16	11	97,25	25,9	10	97,25	25,9	14,466
C22	0,08	142,96	Ø 10	12	96,61	24,26	6	90,8	25,25	16,267
C23	0,08	254,352	Ø 12	12	98,88	25,25	9	96,1	25,3	16,293
C24	0,08	377,17	Ø 16	10	100,01	26,33	6	99,97	25,26	16,372

Tablica 6. Numerički rezultati svih uzoraka - nastavak

Tablica 7. Porast opterećenja i progiba

Uzorak	ρ	Ash [mm²]	Maksimalno opterećenje [kN]	Prirast pri maksimalnom opterećenju [%]	Progib pri maksimalnom opterećenju [mm]	Prirast za progib pri maksimalnom opterećenju [%]	Krajnje opterećenje [kN]	Prirast pri krajnjem opterećenju [%]	Krajnji progib [mm]	Prirast pri krajnjem progibu [%]	Početna krutost Ki [kN/mm]	Prirast pri početnoj krutosti [%]
C1	0,02	142,96	106,02		25,6		53,28		39,74		11,482	
C2	0,02	254,352	109,0	7,2	25,83	1,1	92,04	77	52,1	46	11,684	0,2
C3	0,02	377,17	113,67		25,9		94,21		58,27		11,760	
C4	0,04	142,96	137,57		25,9		123,4		48,33		13,354	
C5	0,04	254,352	140,43	5,5	26,2	1,2	132,04	9,75	55,02	12,5	13,405	0,2
C6	0,04	377,17	144,53		26,22		135,07		54,88		13,506	
C7	0,06	142,96	154,01		26,8		163,02		53,85		15,582	
C8	0,06	254,352	172,52	16,5	27,6	6,3	168,58	10	54,29	13	15,658	0,2
С9	0,06	377,17	179,31		28,51		179,2		60,35		15,747	
C10	0,08	142,96	167,98		25,12		160,12		45,23		17,795	
C11	0,08	254,352	190,5	24	25,2	4	169,33	27	51,69	4,4	17,846	0,2
C12	0,08	377,17	207,37		26,1		203,81		47,65		17,926	
C13	0,02	142,96	60,94		18,59		55,33		32,06		9,601	
C14	0,02	254,352	60,7	1,2	18,57	0,5	51,36	1,2	39,35	21	9,695	0,2
C15	0,02	377,17	61,7		18,68		56		39,53		9,866	
C16	0,04	142,96	77,88		25,01		77,78		25,6		12,358	
C17	0,04	254,352	79,44	3,9	25,61	2	78,53	4,5	31,68	24	12,458	0,2
C18	0,04	377,17	80,5		25,7,7		81,3		31,72		12,536	
C19	0,06	142,96	92,72		25,47		90,4		25,5		14,210	
C20	0,06	254,352	94,88	5,4	25,5	1,6	93,05	7,5	25,5	1	14,346	0,2
C21	0,06	377,17	97,25		25,9		97,25		25,9		14,466	
C22	0,08	142,96	96,61		24,26		90,8		25,25		16,267	
C23	0,08	254,352	98,88	4	25,25	8,5	96,1	10	25,3	1	16,293	0,2
C24	0,08	377,17	100,01		26,33		99,97		25,26		16,372	

Dvoosni/jednoosni uzorak	Postotak maks. opterećenja	Postotak progiba pri maks. opterećenju	Postotak krajnjeg opterećenja	Postotak krajnjeg progiba
C13/C1	57,5	72,6	103,8	80,7
C14/C2	55,7	71,9	55,8	75,5
C15/C3	54,3	72,1	59,4	67,8
C16/C4	56,6	96,6	63,0	53,0
C17/C5	56,6	97,7	59,5	57,6
C18/C6	55,7	98,0	60,2	57,8
C19/C7	60,2	95,0	55,5	47,4
C20/C8	55,0	92,4	55,2	47,0
C21/C9	54,2	90,8	54,3	38,5
C22/C10	57,5	96,6	72,6	55,8
C23/C11	51,9	100,2	56,8	48,9
C24/C12	48,2	100,9	49,1	53,0

Slika 7. Numeričke krivulje opterećenja-progiba za uzorak sa sponama promjera 10 mm pod jednoosnim opterećenjem: a) za ρ = 0,02; b) za ρ= 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Slika 8. Numeričke krivulje opterećenja-progiba za uzorak sa sponama promjera 12 mm pod jednoosnim opterećenjem: a) za ρ = 0,02; b) za ρ= 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Slika 9. Numeričke krivulje opterećenja-progiba za uzorak sa sponama promjera 16 mm pod jednoosnim opterećenjem: a) za ρ = 0,02; b) za ρ= 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Slika 10. Numeričke krivulje opterećenja-progiba za uzorke sa sponama promjera 10 mm pod dvoosnim opterećenjem: a) za ρ = 0,02; b) za ρ= 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Numerička analiza cikličnog jednoosnog i dvoosnog bočnog opterećenja AB stupova

Građevinar 10/2021

Slika 12. Numeričke krivulje opterećenja-progiba za uzorke sa sponama promjera 16 mm pod dvoosnim opterećenjem: a) za ρ = 0,02; b) za ρ = 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Slika 13. Plastična deformacija (oštećenje) betona za uzorke sa sponama promjera 10 mm pod jednoosnim opterećenjem: a) za ρ = 0,02; b) za ρ = 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Slika 14. Plastična deformacija (oštećenje) betona za uzorke sa sponama promjera 12 mm pod jednoosnim opterećenjem: a) za ρ = 0,02; b) za ρ = 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Slika 15. Plastična deformacija (oštećenje) betona za uzorke sa sponama promjera 16 mm pod jednoosnim opterećenjem: a) za ρ = 0,02; b) za ρ= 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Slika 16. Plastična deformacija (oštećenje) betona za uzorke sa sponama promjera 10 mm pod dvoosnim opterećenjem: a) za ρ = 0,02; b) za ρ = 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Slika 17. Plastična deformacija (oštećenje) betona za uzorke sa sponama promjera 12 mm pod dvoosnim opterećenjem: a) za ρ = 0,02; b) za ρ = 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Građevinar 10/2021

Slika 18. Plastična deformacija (oštećenje) betona za uzorke sa sponama promjera 16 mm pod dvoosnim opterećenjem: a) za ρ = 0,02; b) za ρ= 0,04; c) za ρ = 0,06; d) za ρ = 0,08 (ρ - koeficijent armiranja uzdužnom armaturom)

Slika 19. Maksimalno opterećenje uzoraka pri jednoosnom i dvoosnom opterećenju

Slika 20. Progib uzoraka pri maksimalnom jednoosnom i dvoosnom opterećenju

Slika 21. Krajnje jednoosno i dvoosno opterećenje uzoraka

7.1. Utjecaj uzdužne armature

Utjecaj uzdužne armature bazira se na rezultatima numeričke analize konačnih elemenata koji su prikazani na slikama od 7 do 12, isto kao i na podacima iz tablice 6. za uzorke podvrgnute jednoosnom i dvoosnom cikličnom posmičnom opterećenju. Taj utjecaj može se uočiti pri porastu koeficijenta armiranja uzdužnom armaturom (0,002, 0,004, 0,006 i 0,008) kod iste vrijednosti Ash. Maksimalno opterećenje uzoraka (C4/C1, C7/C1, C10/C1) pri jednoosnom cikličnom posmičnom opterećenju raste za (29 %, 45 %, 58 %), a krajnje opterećenje raste za (130 %, 200 %, 200 %). Maksimalno i krajnje opterećenje pri dvoosnom cikličnom posmičnom opterećenju uzoraka (C16/C13, C19/C13, C22/C13) raste za (28 %, 53 %, 60 %) tj. (40 %, 63 %, 65 %). Slično se ponašanje može uočiti i kod ostalih uzoraka s istom vrijednošću Ash. Značajan utjecaj koeficijenta armiranja uzdužnom armaturom (%p) jasno se vidi na slikama 19. i 21. Manji utjecaj koeficijenta armiranja uzdužnom armaturom (%ρ) na maksimalni i krajnji progib može se uočiti na slikama 20. i 22. Broj ciklusa pri maksimalnom i krajnjem opterećenju i početna krutost Ki ne utječu bitno na koeficijenta armiranja uzdužnom armaturom. Osim toga, na slikama od 13. do 18., gdje je prikazano oštećenje (plastična deformacija) betona, može se uočiti da se područje vlačnih pukotina smanjuje s povećanjem koeficijenta armiranja uzdužnom armaturom (%p.). Sitne pukotine upućuju na duktilno ponašanje uzoraka stupova.

7.2. Utjecaj poprečne armature (Ash)

Taj se utjecaj temelji na numeričkim rezultatima modela konačnih elemenata koji su prikazani u slikama od 7. do 12. te na podacima iskazanima u tablici 6. za uzorke podvrgnute jednoosnom i dvoosnom cikličnom posmičnom opterećenju. Ovaj utjecaj također se temelji na rezultatima usporedbe koji su prikazani u tablici 7. Koeficijenta armiranja uzdužnom armaturom (%ρ.) raste za 0,002, 0,004, 0,006 i 0,008 kada se vrijednost Ash povećava za 142,96, 254,352 i 377,17 mm. Može se uočiti sljedeće: vrijednosti maksimalnog opterećenja, krajnjeg opterećenja, odgovarajućih progiba i početne krutosti Ki rastu kod jednoosnog opterećenja za (7,2 %, 5,5 %, 16,5 %, 24 %), (77 %, 9,75 %, 10 %, 27 %), (1,1 %, 1,2 %, 6,3 %, 4 %), (46 %, 12,5 %, 13 %, 4,4 %) i (0,2 %, 0,2 %, 0,2 %, 0,2 %) za svako povećanje koeficijenta armiranja uzdužnom armaturom. U slučaju dvoosnog opterećenja, ta povećanja redom iznose: (1,2 %, 3,9 %, 5,4 %, 4 %), (1,2 %, 4,5 %, 7,5 %, 10 %), (0,5 %, 2 %, 1,6 %, 8,5 %), (21 %, 24 %, 1 %, 1 %) i (0,2 %, 0,2 %, 0,2 %, 0,2 %). Povećanje vrijednosti Ash gotovo uopće ne utječe na brojeve ciklusa pri maksimalnom i graničnom opterećenju. Ta su saznanja u skladu s prije objavljenim rezultatima [16-19]. Na slikama od 13. do 18. možemo uočiti da porast vrijednosti Ash malo utječe na površinu vlačnih pukotina.

7.3. Utjecaj poprečne posmične sile

Ovaj se utjecaj temelji na rezultatima prikazanima na slikama od 7. do 12., te na podacima iz tablice 6., a također i na

usporednim rezultatima prikazanima u tablici 8. za uzorke s istim vrijednostima koeficijenta armiranja uzdužnom armaturom (%p,) i Ash, kada se primjenjuje dvoosno ciklično posmično opterećenje. Iz razlika u ponašanju između uzoraka podvrgnutih jednoosnom cikličnom posmičnom opterećenju (C1 do C12) i uzoraka podvrgnutih dvoosnom cikličnom posmičnom opterećenju (C13 do C24), može se zaključiti da se maksimalna i krajnja opterećenja u Averageu smanjuju za 50 % u slučaju dvoosnog cikličnog posmičnog opterećenja. Osim toga, maksimalni progib u Averageu se smanjuje za 10 %, a krajnji se progib u Averageu smanjuje za 43 %. Takvo se ponašanje može jasno uočiti na slikama od 19. do 22. Brojevi ciklusa pri maksimalnom i graničnom opterećenju bitno se smanjuju zbog dvoosnog cikličnog posmičnog opterećenja. Uz to, na slikama od 13. do 18. može se uočiti lokacija područja maksimalnih vlačnih pukotina u dva suprotna kuta poprečnog presjeka. Utjecaj dvoosnog cikličnog posmičnog opterećenja znatno se umanjuje pri povećanju koeficijenta armiranja uzdužnom armaturom (%ρ.) i vrijednosti Ash.

8. Zaključak

U radu je prikazano numeričko istraživanje ponašanja stupova izrađenih od betona visoke čvrstoće pri konstantnom jednoosnom i dvoosnom bočnom opterećenju. Utjecaj uzdužnog i bočnog armiranja istražuje se za uvjete jednoosnog i dvoosnog bočnog opterećenja. Na temelju numeričkih rezultata dobivenih u ovom istraživanju mogu se izvesti sljedeći zaključci:

- Utvrđena je dobra podudarnost nakon usporedbe numeričkih rezultata ostvarenih pomoću programa ABAQUS s eksperimentalnim rezultatima.
- Povećavanjem koeficijenta armiranja uzdužnom armaturom bitno se povećava i maksimalno i krajnje opterećenje stupova, ali takvo povećanje manje utječe na progib, broj ciklusa i početnu krutost Ki.
- Kod dvoosnog cikličnog posmičnog opterećenja, opterećenje stupova i otpornost na deformacije bitno su manji u usporedbi s jednoosnim opterećenjem. Međutim, taj se utjecaj smanjuje s povećanjem koeficijenta armiranja uzdužnom armaturom (%ρ_i) te s povećanjem vrijednosti Ash.

Iskazane završne napomene u pogledu otpornosti stupova, odgovarajućih progiba, broja ciklusa i početne krutosti Ki, pokazuju da na ponašanje stupa bitno utječe jednoosno opterećenje u kombinaciji s dvoosnim opterećenjem. Ta dva aspekta ne smiju se zanemarivati, posebno u slučaju kutnih stupova.

Zahvala

Autori ovim putem zahvaljuju Sveučilištu Al-Nahrain iz Baghdada u Iraku na podršci u izradi ovog rada.

LITERATURA

- Rodrigues, H.: Biaxial seismic behaviour of reinforced concrete columns, Ph.D. thesis, University of Aveiro Civil Engineering Department, 2012.
- [2] Bousias, S.N., Verzelleti, G., Fardisand, M.N., Magonette, G.: RC columns in cyclic biaxial bending and axial load, The 10th World Conference on Earthquake Engineering, pp. 3041-3046, Madrid, Spain, 1992.
- [3] Saatcioglu, M., Ozcebe, G.: Response of reinforced concrete columns to simulated seismic loading, ACI Structural Journal, 86 (1989), pp. 3-12.
- [4] Lejano, B.A.: Investigation of biaxial bending of reinforced concrete columns through fiber method modelling, Journal of Research in Science, Computing and Engineering, 4 (2007), pp. 61–73.
- [5] Takizawa, H., Aoyama, M.: Biaxial effects in modelling earthquake response of RC structures, Earthquake Engineering and Structural Dynamics, 4 (1976), pp. 523-552.
- [6] Bonet, J.L., Barros, M.H.F.M., Romero, M.L.: Comparative study of analytical and numerical algorithms for designing reinforced concrete sections under biaxial bending, Computers and Structures, 84 (2006) 31-32, pp. 2184-2193.
- [7] CEB.: RC frames under earthquake loading, Lausanne Bulletin 220, 1996.
- [8] Sfakianakis, M.G., Fardis, M.N.: Bounding surface model for cyclic biaxial bending of RC sections, Journal of Engineering Mechanics, 117 (1991) 12, pp. 2748-2769.
- [9] Hussam, K.R., Ibrahim, S.I.H., Abdulkhalik, J.A.: Numerical analysis of RC wall with opening strengthened by CFRP subjected to eccentric loads, GRAĐEVINAR, 69 (2017) 7, pp. 573-580, https:// doi.org/10.14256/JCE.1707.2016
- [10] Bousias, S.N., Verzeletti, G., Fardis, M.N., Gutierrez, E.: Loadpath effects in column biaxial bending with axial force, Journal of Engineering Mechanics, pp. 596-605, 1995.
- [11] Rodrigues, H., Arêde, A., Varum, H., Costa, A.: Behaviour of RC building columns under cyclic loading: experimental study, Journal of Earthquake and Tsunami, JET, World Scientific Publishing, 2012.
- [12] Rodrigues, H., Arêde, A., Varum, H., Costa, A.: Damage evolution in reinforced concrete columns subjected to biaxial loading, Bulletin of earthquake Engineering, 2012.
- [13] Low, S. Moehle, J.P.: Experimental study of reinforced concrete columns subject to multiaxial cyclic loading, Earthq. Engrg. Res. Center, Rep. No UCB/EERC 87-14, Univ. of California, Berkeley, 1987.
- [14] Bechtoula, H., Kono, S., Watanabe, F.: Experimental and analytical investigations of seismic performance of cantilever reinforced concrete columns under varying transverse and axial loads, Journal of Asian Architecture and Building Engineering, 4 (2005) 2, pp. 467-474.

- [15] Nilson, A.H.: Design implications of current research on high strength concrete, High Strength Concrete, SP-87, American Concrete Institute, pp. 85-118, 1985.
- [16] Bjerkeli, L., Tomaszewicz, A., Jensen, A.A.: Deformation properties and ductility of high strength concrete, Proc., Second Int. Symposium on High-Strength Concrete, SP-121, American Concrete Institute, pp. 215-238, 1990.
- [17] Sakaguchi, N., Yamanobe, K., Kitada, Y., Kawachi, T., Koda, S.: Shear strength of high-strength concrete members, Proc., 2nd Int. Symposium on High-Strength Concrete, SP-121, American Concrete Institute, pp. 155-178, 1990.
- [18] Shin, S.W., Kamara, M., Gosh, S.K.: Flexural ductility, strength prediction, and hysteretic behaviour of ultra-high-strength concrete members, Proc., 2nd Int. Symposium on High-Strength Concrete, SP-121, American Concrete Institute, pp. 239-264, 1990.
- [19] Sugano, S., Nagashima, T., Kimura, H., Tamura, A., Ichikawa, A.: Experimental studies on seismic behaviour of reinforced concrete members of high strength concrete, Proc., 2nd Int. Symposium on High-Strength Concrete, SP-121, American Concrete Institute, pp. 61-87, 1990.
- [20] Hibi, J., Mihara, Y., Otani, S., Aoyama, H.: Behaviour of reinforced concrete columns using high strength concrete after flexural yielding, Trans. Japan Concr. Inst., 13 (1991), pp. 395-402.
- [21] Matamoros, A., Sozen, M.: Drift Limits of High-Strength Concrete Columns Subjected to Load Reversals." Journal of Structural Engineering-ASCE, 129 (2003) 3, pp.297.
- [22] ABAQUS.: Standard version 6.13-4 and ABAQUS standard users' manual, Hibbitt Karlsson and Sorensen Inc, 2014.
- [23] FEMA.: Improvement of Nonlinear Static Seismic Analysis Procedures, Washington, DC, 2005.
- [24] Carreira, D.J., Chu, K.H.: Stress-strain relationship for plain concrete in compression, ACI Struct. J., 82 (1985) 11, pp. 797- 804.
- [25] Hordijk, D.: Local approach to fatigue of concrete, Ph.D. thesis, Delft University of Technology, Delft, The Netherland, 1991.
- [26] Lee, P.S., Noh, H.C.: Inelastic buckling behaviour of steel members under reversed cyclic loading, Engineering Structures, 32 (2010), pp. 2579-2595.
- [27] White, C.S., Bronkhorst, C.A., Anand, L.: An improved isotropickinematic hardening model for moderate deformation metal plasticity, Mechanics of Materials, 10 (1990), pp. 127-147.
- [28] Kojic, M., Bathe, K.J.: Inelastic analysis of solids and structures, Springer, New York, 2005.
- [29] Ucak, A., Tsopelas, P.: Constitutive model for cyclic response of structural steels with yield plateau, Journal of Structural Engineering, 137 (2011), pp. 195-206.