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Stability analysis of reinforced concrete prismatic shell structures

Stability analysis of prismatic reinforced concrete shells is presented in the paper. These 
structures are special shells for which both geometry and material properties can be 
considered as constant along the main direction, while only the loading distribution 
may vary. A semi-analytical harmonic coupled finite strip method (HCFSM) is used to 
solve the large deflection and post-buckling problems, or both actions simultaneously. 
This is particularly important for shells having large span-to-width ratios. 
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Analiza stabilnosti armiranobetonskih složenica 

U radu je prikazana analiza stabilnosti armiranobetonskih složenica. Ove konstrukcije 
predstavljaju posebnu vrstu ljuski za koje se i geometrija i svojstva materijala mogu 
smatrati konstantnim duž glavnog pravca, dok samo raspodjela opterećenja može 
varirati. Poluanalitička harmonijski spojena metoda konačnih traka (HSMKT) primjenjuje 
se za rješavanje velikih progiba i problema poslije izvijanja ili na obje pojave istodobno. 
To je osobito važno za ljuske koje imaju veliki omjer raspona i širine
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Stabilitätsanalyse prismatischer Flächentragwerke aus Stahlbeton 

In dieser Arbeit ist die Stabilitätsanalyse prismatischer Flächentragwerke aus Stahlbeton 
dargestellt. Diese Tragwerke werden als eine besondere Art von Schalenkonstruktionen 
angesehen, bei denen die Geometrie und die Materialeigenschaften als konstant 
entlang einer Hauptrichtung angenommen werden können, während die Lastverteilung 
variieren kann. Die halbanalytische Methode harmonisch verbundener finiter Streifen 
wird angewandt, um große Verformungen und das Nachbeulverhalten, oder beide 
Erscheinungen zugleich, zu berücksichtigen. Dies ist von Bedeutung insbesondere für 
Schalentragwerke großen Verhältnisses zwischen Reichweite und Breite.
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local modes, only the terms that are nonlinear in w are relevant. 
Nonlinear geometric relations are accepted in the following form:

 (1)

where u, v and w are the displacements of an arbitrary point in 
the x, y and z direction, while u0, v0 and w0 are the displacements 
of the point in the middle plane, at z=0. Nonlinear contributions 
added in Eq. (1) can be considerably significant in the kind of 
problem considered in this study, wherein u and w displacements 
of component strips generally can have similar magnitudes due 
to large movements of junction nodal lines. In the FSM, which 
combines elements of the classical Ritz and the finite element 
methods, the general form of the displacement function can be 
written as a product of polynomials and trigonometric functions

 (2)

where Ym(y) are the basic functions in the y-direction and Nk(x) are 
the interpolation functions in the x-direction. We define the local 
Degrees Of Freedom (DOFs) as the displacements and rotation 
of a nodal line (DOFs=4), as shown in Figure 1. The DOFs are also 
known as generalized coordinates. The following approximate 
functions are used for the simply supported flat shell strip:

  (3)

Figure 1. Typical flat shell strip

1. Introduction 

The design of reinforced concrete folded plate structures has two 
aspects, the one concerns codes and the other computations. 
Structural codes used throughout the world are now based on 
the semi-probabilistic limit-state approach. In many instances, 
an efficient design of reinforced concrete prismatic shells may 
be based on the assumption of nonlinear response to loading, 
whether it be of the geometric kind, or of the combined geometric-
physical kind. With the modern trend of employing thin plates in 
shell structures made of composite reinforced concrete materials, 
the prediction of geometric nonlinear elastic behavior has become 
increasingly important.
The development of computer techniques and software enables 
analysis of mathematical models of structures that are very close 
to real-life structures. The finite strip method (FSM) has been used 
for solving numerous problems in continuum mechanics [1-3]. 
This method, first developed in the context of thin plate bending 
analysis, is a semi-analytical finite element procedure. In the 
linear elastic analysis, it takes advantage of orthogonal properties 
of harmonic functions in the stiffness matrix formulation to yield 
a block diagonal stiffness matrix, thereby decomposing a two 
dimensional problem into several independent sub problems, 
each corresponding to a one dimensional problem. Further 
advantages of the method lie in the possibility of modeling using a 
small number of harmonics. 
The FSM is one of many procedures that can be used to analyze 
large deflection problems and post-overall-buckling behavior 
of prismatic shell structures [4-6]. However, in the case of the 
geometric stiffness matrix computation, integral expressions 
contain products of trigonometric functions with higher-order 
exponents, and therefore the orthogonal characteristics are no 
longer valid. All harmonics are coupled, and the stiffness matrix 
order and bandwidth are proportional to the number of harmonics 
used. Originally proposed and implemented in the context of a 
special sequential software package [3], the HCFSM formulation 
has since been frequently used and validated [7, 8]. 
The remainder of this paper is organized as follows: An overview of 
the finite-strip geometric nonlinear analysis is presented in Section 
2. In order to emphasize the effects of geometrical nonlinearity 
to longer and shorter shells, prismatic shells of the same cross-
section are analyzed in Section 3. Illustrative numerical results of 
real reinforced-concrete folded plate structures are presented in 
Section 4, which is followed by conclusions given in Section 5.

2. Harmonic coupled finite strip stability analysis 

2.1. Nonlinear geometric relations included in finite strip 

Nonlinear geometric relations in the finite strip can be written 
as a combination of the plane elasticity and the Kirchhoff-Love 
plate theory. However, not all nonlinear terms are of the same 
magnitude. If the plate assembly is long, nonlinear terms involving 
the v0 component are negligible, and in many applications the 
terms containing the u0 component may also be neglected. In 
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The geometric stiffness matrix of a structure is built by summing 
overlapping terms of the component strip matrices, in the same 
way that the conventional stiffness matrix of structure is built 
by summing terms of the conventional strip matrices using the 
transformation matrices between the local and global displacement. 
The flat strips always retain their four DOF per nodal line, and only 
the standard transformation used in plane frame analysis is needed.

2.3. Stability equations

Stability equations are derived from the virtual work principle and 
the strain energy methods. In order to obtain stability equations 
from variational relations, the principle of the stationary potential 
energy will be invoked. Since the principle of the stationary potential 
energy states that the necessary condition for equilibrium of any 
given state is that the variation of the total potential energy of the 
considered structure be equal to zero, we have the following relation:

dP = 0 (9)

We conclude from Eq. (9) that, if the structure is given the small 
virtual displacements, the equilibrium still persists if an increment 
of the total potential energy of the structure dP is equal to zero. 
Eq. (9) is the basis to derive the variational equation of equilibrium 
of a structure, and it is correct for both the pre- and post-critical 
deformation states. Eq. (9) is satisfied for an arbitrary value of 
the variations of parameters dqT

m. Thus we have the following 
conditions, which must be satisfied for any harmonic m:

= 0 (10)

Next, we calculate derivatives of the total potential energy of a 
strip and, finally, we get a non-homogeneous and nonlinear set of 
algebraic equations, which are the searched stability equations.

  (11)

We can visualize the construction of a strip stiffness matrix, 
which is composed of twelve block matrices. Block matrices are 
assembled into the conventional/geometric stiffness matrix of 
each strip according to the scheme presented in Figure 2.

Figure 2. Strip stiffness matrix assembling

In the case of different support conditions the basic functions 
Y(y) are derived from the solution of the differential equation 
for beam vibration:

Za drugačije uvjete  (4)

 
which are employed by Milašinović [6] in bifurcation stability 
problem of plates.

2.2. Formulation of harmonic coupled finite strip

The essential feature of geometric nonlinearity is that 
equilibrium equations must be written with respect to the 
deformed geometry – which is not known in advance.  As a 
preliminary to tracing the equilibrium paths, it is necessary 
to determine the total potential energy of a structure as 
a function of the global DOFs. The steps in the HCFSM 
formulation are discussed in detail by Milašinović [3]. The total 
potential energy of a strip is designated P and is expressed 
with respect to the local DOFs. 

  (5)

The multiplication results of the membrane and bending actions 
in the first bracket of the Eq. (5) are uniquely defined and 
uncoupled, whilst those in the second [only terms which are 
nonlinear in w are relevant] and third bracket {nonlinear terms 
such as square derivatives of u0 are not neglected} are functions 
of the displacements. Consequently, the membrane and bending 
actions are harmonic coupled in many ways. The conventional 
and the geometric stiffness block matrices are, respectively:  

  (6)

Then we introduce the matrices, which are referred to as 
strain matrices:

  (7)

where:

  (8)
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2.4. Solution of nonlinear stability equations

For equilibrium, the principle of stationary potential energy of 
structure requires that

 (12)

where P is a function of the displacements q. R represent the 
gradient or residual force vector, which is generally nonzero for 
some approximate displacement vector q0 (the subscript 0 denotes 
an old value). It is assumed that a better approximation is given by

  (13)

where subscript n denotes a new value. Taylor’s expansion of 
Eq. (12) yields:

 (14)

where  is the matrix of second partial derivatives 
of P calculated at q0 (i.e. the tangent stiffness matrix of 
structure (TSMS) or Hessian matrix). Setting Eq. (14) to zero 
and considering only linear terms in d0 gives the standard 
expression for the Newton-Raphson iteration

 (15)

Using this approach, a further iteration yields:

 (16)

where  for qn. It is obvious from the Newton-
Raphson method that TSMS has to be inverted and updated 
in each iteration step. The process is repeated to establish 
convergence criteria, i.e.

 (17)

where N is the total number of nodal lines in the decomposed 
structure while rt determines the number of iterations. This 
criterion indicates that convergence occurs when the norm of 
the residual forces becomes less than some pre-defined value e. 

In addition, the blocks of the conventional and geometric 
TSMS are:

 (18)

(19)

Comparing these expressions with Eq. (11), it is apparent that 
the conventional stiffness matrix remains unchanged, while 
the geometric stiffness matrix becomes symmetrical. 

2.5. Formation of stiffness matrix blocks

As outlined in Section 2.2, the developed HCFSM approach 
is used to derive stability equations. The approach involves 
a number of symbolic computations. Especially, the symbolic 
integration of energy expressions of each strip may require 
a lot of computational time and memory resources when a 
large number of series terms are used. For a more efficient 
application of the HCFSM formulation the values of integrals 
that are used to compute geometric stiffness block matrices of 
each strip may be computed once, independent of a particular 
strip length, and stored in memory to be used later [3]. The 
elements of the property matrices A and D for the orthotropic 
plates are:

  (20)

2.6. Static buckling 

The loss of stability of static equilibrium state of structures 
subjected to conservative loads is generally known as 
static buckling of structures. For conservative systems, the 
minimum total potential energy principle can be used to test 
the stability of a structure (static equilibriums are extremes 
of the total potential energy). The Hessian with respect to the 
local DOFs is denoted as the tangent stiffness matrix of each 
strip, i.e.

 (21)

The stability of equilibrium states of conservative systems 
built by HCFSM can be assessed by looking at the eigenvalues 
of TSMS with n nodal lines, which are all real, since the tangent 
stiffness matrix of the strip is a symmetric matrix. Let λi 
denote the ith eigenvalue of 

 (22)

Based on theorems presented by Lagrange-Dirichlet and 
Lyapunov [9, 10], it can be concluded that an equilibrium state 
is stable if all λi>0, while an equilibrium state is unstable if one 
or more λi<0. If along a load-path at some equilibrium state 
one or more λi=0, this equilibrium state is denoted as a critical 
state. Static buckling refers in general to cases where, starting 
from some stable state, a critical state is reached along the 
load-path.
Furthermore, without loss of generality, it will also be 
presumed dependent on a single scalar P which determines 
the magnitude (or distribution) of external conservative loads 
Q exerted on the structure.
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The critical state and corresponding load are denoted by 

 (23)

respectively. At a critical state, it follows that

 (24)

where the column z denotes the buckling mode. In general, 
Eq. (24) constitutes a nonlinear eigenvalue problem, since K
(in general) depends in a nonlinear fashion on the global DOFs 
qi, which in turn may depend in a nonlinear fashion on the load 
P, as defined by the equilibrium equations, Eq. (11).
In general, Eq. (24) is solved by solving Eq. (11) for a varying 
load P with for example some sort of a numerical path-
following routine (see Ref. [3]), while simultaneously tracking 
the eigenvalues of TSMS given by Eq. (22). The buckling occurs 
where the matrix becomes singular.

2.7.  Membrane forces and bending moments of 
harmonic coupled finite strip

Three force components  (Nx=tσx, Ny=tσy, Nxy=tσxy) and three 
moment components (Mx, My, Mxy) are related to strains 
through material properties of the strip. In the present 
formulation, the more general case of orthotropic properties 
is assumed.

 (25)

where:
 (26)

Eqs. (25) can be rewritten as follows:

 (27)

Multiplication yields:

 (28)

(28)

The linear vectors  umN̂  and wmM̂  are uniquely defined. The 
nonlinear vector wmN  is entirely consistent with the von 
Karman approach, which ignores nonlinear terms in strain-
displacement relations for bending stresses, but not for 
membrane stresses. The Green-Lagrange approach also 
yields the nonlinear vector u

umN .

3.  The effects of geometrical nonlinearity on 
longer and shorter shells

Prismatic shells of a typical cross-section, shown in Figure 
3, were analyzed for different span lengths of 70, 74, 78, 82, 
86, 90 and 100 m, and a close correspondence with the linear 
analysis results obtained by Cheung and Tam [1] is observed. 
In order to emphasize the effects of geometrical nonlinearity 
on longer and shorter shells, folded plates of the same cross-
section are  analyzed again in this paper for the distributed 
load which is 1000 times higher than the one referred to in [1].

Figure 3.  Prismatic shell sectional dimensions and its strip 
idealization

Distributed loads in Z direction are divided into a total of ten 
increments. Because the deformation is symmetrical about 
the longitudinal central line, only half the structure, in addition 
to this central line, is analyzed. The Young’s elasticity modulus 
for concrete E=35.820.000 kN/m2, and the zero Poisson’s 
ratio, are taken in all examples. Comparative analysis is done 
for linear, von Karman, and Green-Lagrange predictions.
The corresponding load-path in terms of the TSMS eigenvalue 
is depicted in Figure 4. To illustrate the static equilibrium in 
the context of stability, the load-part curves which correspond 
to stable equilibrium states are plotted with a solid line, while 
the load-part curves which correspond to unstable equilibrium 
states are plotted with a dashed line. The analysis of the 
influence of load on TSMS eigenvalue was demonstrated 
to all span lengths and different number of series terms 
adopted in the computations. For shorter shell (70 m) the 
stability regions were observed for the both von Karman and 
the Green-Lagrange predictions under all load-parts. It was 
stated that the load and span length have a serious influence 
on the equilibrium state. When the span length increases a 
drop of the TSMS eigenvalue can be observed in the Green-
Lagrange prediction. For small load values on the longer shell 
(90 m), the instability region was observed to expand, whether 
only one or several series terms are used. However, when load 
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increases the rise of the TSMS eigenvalue is observed, and 
instability regions vanish. 
Using geometric relations of the nonlinear prismatic 
shell theory in the frame of HCFSM, we determined large 
displacements (w, u and j), inner forces and moments for 
both von Karman and Green-Lagrange approaches, taking 
into account various shell span lengths and load-paths. The 
initial and transient shell configurations plotted in Figure 5, in 

which all displacements are presented, show the importance 
of the length and change of load in both predictions. 
In Figure 5, distribution of the membrane force Ny (∑m=1…21) 
along the transverse cross-section at midspan is shown at load 
levels of 8kN/m2 (IINCS=1) and 80kN/m2 (IINCS=10) respectively, 
for both approaches. The effect of nonlinear behavior is very 
prominent in the difference between the results at the last 
loading level for the 90m shell span length. The attained Green-

Figure 4. Variation of TSMS eigenvalue with load intensity for inputs with different series terms
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Lagrange force (75479.8 kN) at the stiffener point (NPOIN=20) 
was 27.4 % lower than the predicted von Karman force (104000 
kN), reflecting the effect of nonlinear terms of displacement u 

through membrane action in two stiffener beams (b/h=0.5/3 
m). The effect of nonlinear behavior is less pronounced at 
the shell center (NPOIN=1), because in this case there is less 
distinction (5.7 %) between the forces.

The distribution of bending moments Mx (∑m=1…21) along 
the transverse cross-section at midspan is also shown in 
Figure 5, and a similar distinction between results for von 
Karman and Green-Lagrange approaches is observed.
As shown in Figure 6, displacement and inner force vallues 
obtained at the first loading level (8 kN/m2) for the 70 m shell 
span length are practically the same for the linear, von Karman 

Figure 5.  The initial and final configurations and inner forces along the transverse cross-section at midspan:  a) von Karman; b) Green-Lagrange approach
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Figure 6. Load-displacement (w, u, and j) and load-membrane force Ny curves with instability regions
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and Green-Lagrange predictions, because at this loading level 
the shell exhibits no significant geometric nonlinear behavior. 
We analyzed equilibrium paths and we found all stability 
regions for this shell span length, although the values of 
central displacement w change the sign. However, it is not the 
case for the larger shell span lengths.

For the 90 m shell span length in the Green-Lagrange 
computation, four instability regions are observed with only 
one series term included, and two with 21 harmonics used. In 
instability regions the displacement u and rotation j reached 
extreme values at the stiffener points. Then they change 
the sign and the shell suddenly leaps to a stable state of 

Figure 7. HCFSM convergence of central displacement w, central moment Mx and membrane force Ny at the stiffener point (loading level 80 kN/m2)
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equilibrium under higher load levels. Of course, these regions 
are in connection with buckling. However, this problem is 
different from the buckling of a plate under an axial load 
since it involves a very important membrane behavior in the 
pre-buckling configurations and an important membrane-
bending coupling (and torsion) in the post-buckling range. The 
shell buckles after reaching extreme displacement values at 
the stiffener points.
Figure 7 illustrates the extremely rapid monotonic 
convergences of central displacements w for 70 m and 90 m 
shell span lengths. It is apparent that only a few series terms 
are required for the displacements to converge to the exact 
answer. The rate of convergence for central moments Mx, and 
membrane forces Ny at the stiffener point was also analyzed 
at the last loading level (80 kN/m2). It is apparent that 21 
series terms (summing 21 harmonics, i.e., 11 off-terms 
only) are required for the moments to converge to the exact 
answer, and 9 series terms for the forces. The convergence is 
non-monotonic for both inner forces.

4.  Application to real reinforced concrete folded 
plate structures 

Feasible reinforced concrete folded plate structures (RCFPS) 
of different span lengths and various cross-sections were 
analyzed in detail by Goleš [11]. On the basis of these results, 
here we will estimate the importance of effects of geometrical 
nonlinearity on real shells with realistic load, and assess the 
magnitude of error that results from the assumption of small 
displacements of these structures. 

Figure 8. Cross-section, load and finite strip mesh of analyzed RCFPSs 

Reinforced concrete simple supported prismatic folded plate 
structures, with the total width of B=11.6m, are analyzed 
(Figure 8). Vertical uniformly distributed load: self-weight of 
structure g, the weight of covering on sloped plates Dg=0.5 
kN/m2, and snow load s=1.0 kN/m2, is applied. Structures are 
made of concrete C35/45 with reinforcement B400.
In the first step, the structural analysis of RCFSMs of various 
span lengths, ranging from L=5 m to L=100 m, is performed by 
the linear FSM using one hundred series terms. The symmetry 
of geometry, loads and supporting conditions is utilized, and 
so the numerical analysis is carried out for only one half of the 
structure. The finite strip mesh (of 10 strips), their labels and 

labels of nodal lines, as well as the orientation of the global 
coordinate system, are shown in Figure 8. The elastic modulus 
E=34 GPa and Poisson’s ratio n=0 are used in this analysis.
According to the distribution of displacements and stresses 
(Figures 9 to 11) due to the total service load for various span 
lengths of the analyzed RCFPSs, two different behaviors can 
be observed.  One is for "short" structures, up to 10 m in length, 
with the corresponding length/width ratio of individual plates 
of ly/lx=3.19, and the other is for structures longer than L=20 
m (ly/lx=6.37).
Bottom line of edge beams (node line 11), of spans L=5 m and 
L=10 m, moves outward (Figure 9), while in all other spans 
it moves inward (toward the axis of symmetry of the cross 
section). Ending with L=20 m, the distribution of horizontal 
displacements between nodal lines 5 and 9 is parabolic, while 
it is almost linear for longer spans.
In spans L=10 m and L=20 m, points near the axis of 
symmetry of the cross section are moving upward (negative 
displacements). In all other span lengths, all points of the 
cross section have a positive vertical deflection (Figure 10).
For span lengths of up to L=20 m the maximum value of 
longitudinal stress in compression is not reached at the 
highest point of cross section (nodal line 1), but slightly below 
it (Figure 11). The height of pressured area reduces with an 
increase in span length. For very large spans (L=100 m) the 
distribution of longitudinal stresses becomes linear.
In the second step, the large-displacement stability analysis 
of RCFPS, shown in Figure 8, is performed for span lengths of 
10, 15, 20, 25 and 30 m, using the von Karman and the Green-
Lagrange HCFSM solutions [12]. 31 series terms are adopted 
in computations. The total loading is divided into 8 (0.6, 0.04, 
0.04, 0.04, 0.04, 0.04, 0.1 and 0.1) load increments. The load 
factor 0.8 corresponds to the service load. The convergence 
is established when the norm of the residual forces value is 
lower than or equal to 0.1 (accuracy 1/1000).  Figure 12 shows 
that the effect of nonlinear behavior is not much pronounced 
in the 20 m long structure, especially for the load level that 
corresponds to the service state (the difference between the 
results of linear and nonlinear analysis is less than 10 %). 
In this example, the response always involves a hardening 
structure. During the research, we compared HCFSM results 
with those obtained in ABAQUS with 58000 shell elements 
[12]. We used the STR13 element which is the only element in 
ABAQUS library that is intended for use in thin plates according 
to the Kirchof’s theory. This element models arbitrarily large 
rotations but only small strains.
The analysis of the load intensity influence on the TSMS 
eigenvalue was demonstrated for analyzed span lengths and 
31 series terms adopted in computations (Figure 13). It can 
be concluded that the assumption of small displacements 
is fully justified for span lengths up to 15m (ly/lx=4.8). For 
longer structures, geometric nonlinear effects are more 
pronounced, even for the service state of load, and should 
not be neglected.
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Figure 9. Displacements in direction of the global x axis at midspan

Figure 10. Vertical deflection at midspan

Figure 11. Longitudinal stress σy at midspan, along the height of cross section

Figure 12.  Variation of central deflection w in nodal line 1 and longitudinal force Ny in nodal 
line 11 with load intensity, using HCFSM

Figure 13.  Variation of TSMS eigenvalue with 
load intensity for inputs
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5. Conclusion

Two HCFSM formulations using von Karman and Green-
Lagrange geometric relations, for prismatic shell analysis 
with large geometric nonlinearities, are presented in this 
paper. The instability of panels, columns, box bridges, or any 
type of prismatic shells having large span-to-width ratios, 
can be induced by any kind of load: longitudinal, compressive, 
or even tensile, by bending, and also by torsional moment. 
In this respect, a uniform criterion for instability of any kind 
of shell structures, whose modeling can be found within the 
HCFSM framework, is proposed. It is shown that the stability 
of equilibrium states of prismatic shells can be assessed by 
looking at eigenvalues λi of TSMS, which are all real since the 
tangent stiffness matrix of the strips are symmetric matrices. 
An equilibrium state is stable if all λi>0, while an equilibrium 
state is unstable if one or more λ<0. If along a load-path at 
some equilibrium state one or more λi=0, this equilibrium 
state is denoted as a critical state.
According to results of analyses made for feasible reinforced 
concrete folded plate structures, some conclusions about 
justifiability of the assumption of small displacements can 
be made even on the basis of linear analysis. Two different 
behaviors of structures are observed - for "short" structures 
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and "long" structures. The border between these two behaviors 
denotes the border between structures in which the linear 
analysis gives results of sufficient accuracy, and structures 
whose nonlinear behavior can not be neglected. This is 
confirmed by means of the geometric nonlinear analysis. It 
is also shown that, for realistic folded plate structures under 
service load, geometric nonlinear effects are pronounced for 
large spans only.
The HCFSM formulation has proven to be appropriate for 
the stability analysis of prismatic shell structures, owing to 
inexpensiveness, accuracy and reliability of von Karman and 
Green-Lagrange predictions.
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