Prethodno priopćenje

Primljen / Received: 15.12.2012. Ispravljen / Corrected: 18.1.2013. Prihvaćen / Accepted: 21.2.2013. Dostupno online / Available online: 10.5.2013.

# Ciljano ubrzanje u višemodalnoj metodi naguravanja A/B okvira

#### Autori:



Ivan Balić, dipl.ing.građ. Sveučilište u Splitu Fakultet građevinarstva, arhitekture i geodezije <u>ivan.balic@gradst.hr</u>



Prof.dr.sc. Ante Mihanović, dipl.ing.građ. Sveučilište u Splitu Fakultet građevinarstva, arhitekture i geodezije ante.mihanovic@gradst.hr



Prof.dr.sc. Boris Trogrlić, dipl.ing.građ. Sveučilište u Splitu Fakultet građevinarstva, arhitekture i geodezije boris.trogrlic@gradst.hr

#### Ivan Balić, Ante Mihanović, Boris Trogrlić

#### Ciljano ubrzanje u višemodalnoj metodi naguravanja A/B okvira

U radu je prikazan postupak traženja ciljanog ubrzanja tla kao mjera najniže potresne otpornosti. Dobivanje ciljanog ubrzanja postiže se višemodalnim naguravanjem po načelu anvelope. Prikazano je naguravanje linearnom kombinacijom modova (L) i kombinacijom modova kao kvadratnog korijena iz sume kvadrata (SRSS). Na konkretnim primjerima 5-katnog i 9-katnog a/b okvira pokazuje se vrlo značajan utjecaj viših modova. Slomno ubrzanje tla u višemodalnom naguravanju značajno je manje, pa i višestruko manje od ubrzanja s jednim modom.

#### Ključne riječi:

metoda naguravanja, kombiniranje modova, a/b okvir, ciljano ubrzanje, opći slomni vektor

Preliminary note

#### Ivan Balić, Ante Mihanović, Boris Trogrlić

#### Target acceleration in multimodal pushover method for R/C frames

The procedure of searching the target ground acceleration as a measure of the lowest seismic resistance is presented in the paper. This objective is achieved by the multimodal pushover analysis based on the envelope principle. The pushover method founded on the linear combination of modes (L), and on mode combinations as a square root of the sum of the squares (SRSS), is presented. Examples of 5-storey and 9-storey R/C frames point to a highly significant influence of higher modes. The failure ground acceleration in multimodal pushover analysis is significantly lower, and even several times lower, compared to the single mode acceleration.

#### Key words:

pushover method, combining of modes, R/C frame, target acceleration, general failure force vector

Vorherige Mitteilung

#### Ivan Balić, Ante Mihanović, Boris Trogrlić

#### Zielbeschleunigung in der multimodalen Pushover Analyse für Stahlbetonrahmen

In der vorliegenden Arbeit ist die Berechnung der Zielbodenbeschleunigung als Maß der niedrigsten Erdbebenbeständigkeit dargestellt. Die Zielbeschleunigung wird, auf dem Hüllkurven-Prinzip beruhend, durch eine multimodale Pushover Analyse ermittelt. Der Lastvektor ist sowohl als lineare Kombination (L) als auch in der Form der Quadratwurzel aus der Summe der Quadrate (SRSS) der Schwingformen beschrieben. Anschauliche Beispiele eines 5-stöckigen und eines 9-stöckigen Stahlbetonrahmens weisen auf den bedeutenden Einfluss höherer Schwingformen. Die kritische Bodenbeschleunigung bei der multimodalen Pushover Analyse ist bedeutend und sogar mehrfach kleiner als bei der ausschließlichen Berücksichtigung der ersten Eigenschwingung.

#### Schlüsselwörter:

Pushover Methode, Kombination von Schwingformen, Stahlbetonrahmen, Zielbeschleunigung, allgemeiner kritischer Lastvektor

## 1. Uvod

Metoda naguravanja predstavlja efikasan postupak za nelinearnu analizu potresne otpornosti. U kombinaciji sa spektrom odgovora sustava s jednim stupnjem slobode metodom se dobiva ocjena kapaciteta nosivosti i deformacija konstrukcije usljed djelovanja potresa.

Metoda je implementirana u razne međunarodne kodove za proračun konstrukcija, te je i preporučena od istraživačkih institucija [1-3]. Razvoj postupka usvojenog u EN 1998, počeo je prije tri desetljeća [4, 5], dok su razna poboljšanja i primijene poput onog u radovima [6, 7] još aktualna [8]. U praktičnoj primijeni dominantna je metoda naguravanja zasnovana na raspodjeli ubrzanja prema prvom modu i konstantnoj raspodjeli ubrzanja po visini konstrukcije. U mnogim radovima, kao što su [9-15] promatran je utjecaj viših modova kod nelinearne analize konstrukcija pomoću metode naguravanja sa zaključkom da je znatan utjecaj viših modova.

U ovom radu se izlaže jedna metoda višemodalnog naguravanja s ciljem uključivanja viših modova na način da se zadovolji princip anvelope i odredi najniža otpornost. Konkretna primjena metode je ostvariva za konkretan elastični spektar. U primjerima prikazanim u radu korišten je spektar tipa 1 za tlo tipa A prema EN 1998.

Krivulje kapaciteta nosivosti određene su metodom naguravanja za svaki mod zasebno, te zatim prebačene u ADRS format (spektar odgovora ubrzanje-pomak) za prethodno odabrani spektar. Oblik modova i veličine perioda se određuju na osnovu linearno elastičnog modela. Metoda se sada može primijeniti kroz slijedeći niz koraka:

- Postupak započinje izborom konkretnog elastičnog spektra.
- Potom se bira iznos hipotetskog vršnog ubrzanja tla, uobičajeno ono koje je najniže od svih modova.
- Za svaki mod pojedinačno, na temelju krivulje kapaciteta nosivosti, određuje se odgovarajuća razina spektralnog ubrzanja i spektralnog opterećenja uzimajući u obzir ciljani pomak prema EN 1998. Oblik vektora opterećenja odgovara obliku odgovarajućeg moda.
- Nadalje, opći slomni vektor opterećenja formira se prema nekim mogućim kombinacijama opterećenja stvarnih modova. Kao moguće modalne kombinacije u radu su prikazane: linearna (L) kombinacija i kombinacija kvadratnog korijena iz sume kvadrata (SRSS).
- Za ovako formirano opterećenje, odnosno opći slomni vektor, pomoću nelinearne analize konstrukcije metodom naguravanja određen je kapacitet nosivosti, odnosno računsko granično opterećenje.

Postavljeni zadatak se smatra riješenim kada je u granicama zadane točnosti postignuta jednakost opterećenja iz općeg slomnog vektora i računskog graničnog opterećenja za pretpostavljeno ubrzanje tla. U nekoliko koraka, za odabrano različito hipotetsko ubrzanje i pripadne vektore, postupak vodi brzom rješenju. Dobiveni rezultat daje nam ciljano ubrzanje koje predstavlja najmanje ubrzanje koje dovodi do računskog graničnog stanja.

Na temelju obrađenih primjera linearne (L) kombinacije i korijenske (SRSS) kombinacije modova može se zaključiti da je ciljano ubrzanje uvijek niže od graničnog ubrzanja svakog moda pojedinačno. Ta činjenica predstavlja početni korak u metodi. Postupak ima obilježja principa anvelope.

# 2. Određivanje ciljanog ubrzanja

Sukladno prethodno navedenom postupak traženja ciljanog ubrzanja počinje određivanjem vektora oblika  $\varphi_r$  pripadnih perioda  $T_i$ i sudjelujućih masa  $m_{er}$  na osnovu linearno elastične analize. Vektor opterećenja  $\mathbf{F}_r$  za svaki *i*-ti mod zasebno, određen je preko faktora intenziteta ukupnog djelovanja  $p_r$ kao produkt matrice masa **M** i vekora  $\varphi_i$ 

$$\mathbf{F}_{i} = \boldsymbol{\rho}_{i} \mathbf{M} \, \boldsymbol{\Phi}_{i} \tag{1}$$

Krivulje kapaciteta nosivosti su izračunate numeričkim modelom stabilnosti i nosivosti prostornih linijskih konstrukcija s uvažavanjem materijalne i geometrijske nelinearnosti [16] s monotono rastućim vektorom opterećenja **F**<sub>i</sub>. Na taj način određene su slomne poprečne sile u presjeku pri osnovi proračunskog modela za svaki mod pojedinačno.

U traženju ciljanog ubrzanja, svaki pokušaj počinje s pretpostavljenom vrijednosti ciljanog ubrzanja tla  $a_{gr}$ . Za pretpostavljeni  $a_{gr}$  tip elastičnog spektra (tip 1 ili tip 2), tip tla (parametar tla 5) i korekcijski faktor prigušenja ( $\eta$ =1 za  $\xi$ =5 % viskozno prigušenje), konstruira se ADRS (engl. Acceleration Displacement-Response Spectra) krivulja. U ADRS format prebačene su krivulje kapaciteta nosivosti svakog moda pojedinačno.

Spektralno ubrzanje  $a_{s,i}$  određeno je za svaki mod zasebno, uvažavajući pravila EN 1998 i Dodatak B, tako da pomak pri slomu na krivulji nosivosti iznosi 150 % ciljanog pomaka.

$$d_t = \frac{2}{3}d_u \tag{2}$$

Potrebno je odrediti pripadni elastoplastični ekvivalent (bilinearni dijagram sila-deformacija), odnosno dijagram kod kojeg sjecište perioda  $T_i$  i srodnog ciljanog pomaka  $d_t$  pada na ADRS krivulju za pretpostavljeno ubrzanje tla. Drugim riječima, mora se pronači jednakost dobivenog ubrzanja tla  $a_{gri}$ u *i*-tom pokušaju s pretpostavljenim ubrzanjem tla  $a_{gri}$  iz čega slijedi spektralno ubrzanje  $a_{er}$ .

Postupak određivanja odgovarajućeg bilinearnog dijagrama sila-deformacija je prikazan na slici 1.

Za slučaj kada je period  $T_{\geq}T_c$  na slici 1.a1) i 1.a2) prikazan je odabrani bilinearni dijagram sila-deformacija. Na slici 1.a1) odabrani dijagram daje veće, a na slici 1.a2) manje ordinate na ADRS krivulji u odnosu na ADRS krivulju za pretpostavljeno ubrzanje tla  $a_{\alpha c}$ . Na slici 1.a3) odabrani dijagram za odgovarajući







Slika 1. Određivanje spektralnog ubrzanja a<sub>s</sub>; a1)-a3) za T<sub>i</sub>≥T<sub>c</sub>; b1)-b3) za T<sub>i</sub><T<sub>c</sub>

period  $T_i$  i srodni ciljani pomak  $d_t$  daje sjecište na ADRS krivulji, iz čega slijedi spektralno ubrzanje  $a_{s,r}$  Sličan postupak provodi se za slučaj kada je  $T_i < T_c$  kada se sjecište traži prema EN 1998 – Dodatak B.

Nakon određivanja prethodnog koraka za svaki vektor, definira se parametar  $\delta$ , kao omjer dobivenog spektralnog ubrzanja i pretpostavljenog ubrzanja tla.

$$\delta_{i} = \frac{a_{s,i}}{a_{gr}} = \delta_{i} \left( a_{gr} \right) \tag{3}$$

Nadalje, definiraju se moguće modalne kombinacije. Kako je već prethodno navedeno prati se linearna (L) kombinacija i kombinacija kvadratnog korijena iz sume kvadrata (SRSS). Do traženog rezultata ciljanog ubrzanja dolazi se uzastopnim pokušajima, varirajući pretpostavljeno hipotetsko ubrzanje kao ulazni podatak.







### 2.1. Ciljano ubrzanje prema linearnoj kombinaciji modova

Polazno hipotetsko granično opterećenje  $\Sigma F_i$  za linearnu kombinaciju modova ovisi o odabranom polaznom ubrzanju, a može se prikazati u obliku

$$\sum F_{i} = \sum \pm m_{ei} a_{si} \left( a_{gr} \right) F_{fi} / \left| F_{fi} \right|$$
(4)

Gdje znak ± znači više nepovoljan učinak na karakterističnom presjeku. Karakteristični presjek za primjer a/b okvira predstavljen je preko sume momenata savijanja na dnu najnižeg kata. Tijekom izbora predznaka, može se koristiti utjecajna linija za karakteristične vrijednosti.

Izraz *F<sub>fi</sub>* predstavlja slomnu silu za pojedini vlastiti vektor. U numeričkom postupku, pretpostavljeno opterećenje se nanosi inkrementalno. Kao rezultat dobiveno je pridruženo granično opterećenje, odnosno ukupna poprečna sila u presjeku pri osnovi proračunskog modela  $F_L$  cijelog sustava. Omjer iznosa računskog graničnog opterećenja  $F_L$  i polaznog hipotetskog vektora opterećenja  $\Sigma F_i$  pokazuje realnost polazne postavke.

Tek kada se dobije njihova jednakost, u granicama zadane računske točnosti, postignut je traženi rezultat odnosno dobiveno je ekstremno granično ubrzanje, tj. ciljano ubrzanje  $a_{act}$ koje je najmanje računsko ubrzanje tla.

## 2.2. Ciljano ubrzanje prema korijenskoj kombinaciji modova

Korijenska kombinacija, odnosno metoda kvadratnog korijena iz sume kvadrata (SRSS) je metoda koja se u slučajevima kada dominira prvi sumand, može pojednostavniti kao suma prvog člana i polovice sume svih drugih članova. Polovica sudjelujućeg opterećenja pojedinačnog višeg moda približno je jednaka ukupnom opterećenju koje pripada spektru čije je ubrzanje  $a_{gr}/2$ [17], tako da se pripadna kombinacija približno može opisati izrazom

$$\sum F_{i} = \pm m_{et} a_{s1} \left( a_{gr} \right) F_{f1} / \left| F_{f1} \right| + \sum_{i=2}^{n} \pm m_{ei} a_{si} \left( a_{gr} / 2 \right) F_{fi} / \left| F_{fi} \right|$$
(5)

Ostali dio postupka je analogan onom za linearnu kombinaciju.

# 3. Primjeri

U nastavku su obrađena dva primjera prostornih a/b okvira, i to 5-katni i 9-katni okvir. Proračun se provodi uz slijedeće pretpostavke i ograničenja: a) proračun dinamičkih svojstava ( $\varphi_{r}, T_{r}, m_{e}$ ) provodi se na linearnom modelu okvira s međukatnim pločama i ishodišnim modulom elastičnosti  $E_{ci}$ ; b) u proračun nije uključen učinak slučajne torzije; c) okviri iz oba primjera su simetrični u oba smjera.

## 3.1. Primjer 1: 5-katni prostorni a/b okvir

#### 3.1.1. Opis modela i proračun vektora opterećenja

Analizira se 5-katni prostorni a/b okvir dimenzija kako je prikazano na slici 2.a. Dimenzije i diskretizacija poprečnih presjeka greda prikazani su na slikama 2.d i 2.e, a stupova na slici 2.f. Svojstva poprečnih presjeka dodijeljena su okviru kako je pokazano na slici 2.c. Raspodijeljeno opterećenje je zadano po gredama kako je prikazano na slici 2.b, a koncentrirane sile su zadane u čvorovima na svim križanjima greda i stupova. Za proračun vlastitih vektora zadane su koncentrirane mase (vidjeti sliku 2.b) i modul materijala *E*=24.38 GPa, kao ishodišni modul na modelu betona (vidjeti sliku 2.h).



Slika 2. Primjer 1: a) prostorni okvir; b) opterećenje po gredama i koncentrirane mase; c) oznake poprečnih presjeka; d)-f) diskretizacije poprečnih presjeka; g) model armaturnog čelika; h) model betona

Tablica 1. Svojstva vektora horizontalnog opterećenja za smjer x

| Vektor                  | <i>T</i> ,[s] | <i>m<sub>ei</sub></i> [%] | <i>m<sub>ei</sub></i> [t] | F <sub>fi</sub> [kN] |
|-------------------------|---------------|---------------------------|---------------------------|----------------------|
| $\Phi_{_{1}}$           | 0,905         | 83,12                     | 701,2                     | 1694                 |
| $\Phi_2$                | 0,281         | 8,65                      | 73,0                      | 1813                 |
| $\Phi_{_{\mathcal{J}}}$ | 0,168         | 3,93                      | 33,1                      | 2752                 |
| $\Phi_4$                | 0,118         | 0,69                      | 5,8                       | 1712                 |
| $\Phi_{5}$              | 0,113         | 0,59                      | 5,0                       | 1955                 |



Slika 3. Krivulja nosivosti za vektor  $\phi_1$  (smjer x) i slijed plastifikacije presjeka



Slika 4. Proračun potresne otpornosti za prvi vektor (F1)



Slika 5. Krivulja nosivosti za linearnu kombinaciju modova za smjer x

Za proračun krivulje nosivosti korišten je numerički model betona i armaturnog čelika prikazan na slikama 2.g i 2.h. Ukupna težina modela iznosi *W*=8280 kN, a ukupna masa modela iznosi *M*=844,0 tone. Rješenjem linearne dinamičke zadaće dobiveni su vlastiti vektori  $\Phi_r$  te podaci o pripadajućim periodima  $T_i$  i sudjelujućim masama  $m_{er}$ što je prikazano u tablici 1.

Razdioba i intenzitet bočnih horizontalnih sila na okvir određena je prema izrazu (1). Tako nastali vektor horizontalnog opterećenja u nelinearnom proračunu monotono je povećavan sve do sloma, odnosno dostizanja faktora kritičnog opterećenja. Suma svih horizontalnih sila daje slomnu silu  $F_{fi}$  za pojedini vlastiti vektor.

Oblik prvog vektora opterećenja u graničnom stanju, pripadna krivulja nosivosti kao i redoslijed nastajanja plastifikacijskih zglobova za smjer *x* prikazani su na slici 3. Rani početak plastifikacije je posljedica opterećivanja na način tipičan za metodu naguravanja, gdje se u prvoj fazi zadaje vertikalno gravitacijsko opterećenje, a u drugoj fazi horizontalno potresno opterećenje. Stoga, plastifikacija počinje neposredno nakon starta druge faze opterećenja.

Za isti smjer *x*, konverzija krivulje nosivosti u ADRS format, određivanje elasto-plastičnog ekvivalenta kao i graničnog ciljanog ubrzanja tla sukladno EN 1998, prikazani su na slici 4. za prvi mod.

## 3.1.2. Određivanje ciljanog ubrzanja za smjer *x*

Kod određivanja ciljanog ubrzanja, kao polazno ubrzanje u prvom koraku, pretpostavlja se ciljano ubrzanje dobiveno za prvi vektor, što iznosi  $a_{gr,1} =$ 0.43g. Istovjetni postupak proveden je za ostale modove. U tablici 2, pokazan je tok metode pokušaja s rezultatom za minimalni  $a_{gr}$  za slučaj ciljanog ubrzanja linearne kombinacije modova za smjer x. Dobiveno ciljano ubrzanje iznosi  $a_{gr,t} =$ 0.205 g. Njemu pripadna sila u presjeku pri osnovi proračunskog modela (2188 kN) nije najmanja slomna sila.

| <b>a</b> <sub>gr,i</sub> | <b>a</b> <sub>s,1</sub> | F,   | <b>a</b> <sub>s,2</sub> | $F_2$ | <b>a</b> <sub>s,3</sub> | F3  | <b>a</b> <sub>s,4</sub> | $F_4$ | <b>a</b> <sub>s,5</sub> | $F_{_{5}}$ | $\Sigma F_i$ | F    | $F_L / \Sigma F_i$ | $\delta_1$ | $\delta_{z}$ | $\delta_{_{\mathcal{J}}}$ | $\delta_4$ | $\delta_{_{5}}$ |
|--------------------------|-------------------------|------|-------------------------|-------|-------------------------|-----|-------------------------|-------|-------------------------|------------|--------------|------|--------------------|------------|--------------|---------------------------|------------|-----------------|
| 0,43                     | 0,247                   | 1694 | 1,272                   | 911   | 1,425                   | 463 | 0,780                   | 44,5  | 0,780                   | 38,2       | 3156         | 2241 | 0,71               | 0,574      | 2,958        | 3,314                     | 1,814      | 1,814           |
| 0,25                     | 0,224                   | 1541 | 0,783                   | 561   | 0,938                   | 305 | 0,610                   | 34,8  | 0,610                   | 29,9       | 2471         | 2051 | 0,83               | 0,896      | 3,132        | 3,752                     | 2,440      | 2,440           |
| 0,21                     | 0,207                   | 1424 | 0,678                   | 485   | 0,788                   | 256 | 0,510                   | 29,1  | 0,510                   | 25,0       | 2220         | 2175 | 0,98               | 0,986      | 3,229        | 3,752                     | 2,429      | 2,429           |
| 0,205                    | 0,205                   | 1410 | 0,664                   | 476   | 0,769                   | 250 | 0,492                   | 28,0  | 0,492                   | 24,1       | 2188         | 2188 | 1,00               | 1,000      | 3,239        | 3,751                     | 2,400      | 2,400           |
| 0,20                     | 0,202                   | 1390 | 0,652                   | 467   | 0,750                   | 244 | 0,483                   | 27,5  | 0,483                   | 23,7       | 2151         | 2194 | 1,02               | 1,010      | 3,260        | 3,750                     | 2,415      | 2,415           |
| 0,18                     | 0,189                   | 1300 | 0,585                   | 419   | 0,675                   | 219 | 0,443                   | 25,3  | 0,443                   | 21,7       | 1985         | 2204 | 1,11               | 1,050      | 3,250        | 3,750                     | 2,461      | 2,461           |

Tablica 2. Ciljano ubrzanje pri linearnoj kombinaciji modova za smjer $\boldsymbol{x}$ 

Tablica 3. Ciljano ubrzanje pri korijenskoj (SRSS) kombinaciji modova za smjer x

| a <sub>gr,i</sub> | <b>a</b> <sub>s,1</sub> | F,   | a <sub>gr,i</sub> /2 | <b>a</b> <sub>s,2</sub> | <i>F</i> <sub>2</sub> | а <sub>s,3</sub> | F3  | <b>a</b> <sub>s,4</sub> | F <sub>4</sub> | <b>a</b> <sub>s,5</sub> | $F_{5}$ | $\Sigma F_i$ | F <sub>SRSS</sub> | $F_L / \Sigma F_i$ | $\delta_1$ | $\delta_2$ | $\delta_{_{\mathcal{B}}}$ | $\delta_4$ | $\delta_5$ |
|-------------------|-------------------------|------|----------------------|-------------------------|-----------------------|------------------|-----|-------------------------|----------------|-------------------------|---------|--------------|-------------------|--------------------|------------|------------|---------------------------|------------|------------|
| 0,43              | 0,247                   | 1699 | 0,215                | 0,678                   | 485                   | 0,806            | 262 | 0,510                   | 29,1           | 0,510                   | 25,0    | 2501         | 2201              | 0,88               | 0,574      | 1,577      | 1,874                     | 1,186      | 1,186      |
| 0,27              | 0,233                   | 1603 | 0,135                | 0,426                   | 305                   | 0,506            | 165 | 0,315                   | 18,0           | 0,315                   | 15,4    | 2106         | 2106              | 1,00               | 0,863      | 1,578      | 1,874                     | 1,167      | 1,167      |
| 0,25              | 0,224                   | 1541 | 0,125                | 0,400                   | 286                   | 0,469            | 152 | 0,285                   | 16,2           | 0,285                   | 14,0    | 2010         | 2050              | 1,02               | 0,896      | 1,600      | 1,876                     | 1,140      | 1,140      |
| 0,20              | 0,202                   | 1390 | 0,100                | 0,332                   | 238                   | 0,375            | 122 | 0,233                   | 13,3           | 0,233                   | 11,4    | 1774         | 2040              | 1,15               | 1,010      | 1,660      | 1,875                     | 1,165      | 1,165      |

Na slici 5. prikazani su vektori opterećenja svih sudjelujućih modova, krivulja nosivosti i redoslijed nastajanja plastifikacijskih zglobova za linearnu kombinaciju modova za smjer *x*.

Rezultati za korijensku (SRSS) kombinaciju modova za smjer x su prikazani tablici 3. Ciljano ubrzanje iznosi  $a_{gr,t} = 0.27g$ . Usporedbom dobivenih ciljanih ubrzanja može se zaključiti da je linearna kombinacija modova nepovoljnija od korijenske (SRSS) kombinacije jer slom konstrukcije nastupa pri manjem ciljanom ubrzanju ( $a_{gr,t} = 0.205$  g) za razliku od ciljanog ubrzanja kod SRSS kombinacije ( $a_{qr,t} = 0.27$  g).

Na slici 6. prikazani su vektori opterećenja sudjelujućih modova, krivulja nosivosti i redoslijed nastajanja plastifikacijskih zglobova za korijensku (SRSS) kombinaciju modova za smjer *x*.



U nastavku su prikazani rezultati analize za smjer *y*. Svojstva vektora opterećenja za svaki pojedini mod su prikazana u tablici 4.

|           | <i>a</i>   |         |               |             |            |
|-----------|------------|---------|---------------|-------------|------------|
| Lablica 4 | . Svoistva | vektora | horizontalnog | opterecenia | za smier i |
|           |            |         |               |             |            |

| Vektor                  | <i>T</i> ,[s] | <b>m</b> <sub>ei</sub> [%] | <i>m<sub>ei</sub></i> [t] | $F_{_{fi}}[kN]$ |
|-------------------------|---------------|----------------------------|---------------------------|-----------------|
| $\Phi_{_1}$             | 1,002         | 81,97                      | 691,8                     | 1418            |
| $\Phi_{_2}$             | 0,317         | 10,43                      | 88,0                      | 1563            |
| $\Phi_{_{\mathcal{J}}}$ | 0,176         | 4,14                       | 34,9                      | 2436            |
| $\Phi_{_4}$             | 0,119         | 1,92                       | 16,2                      | 2225            |
| $\Phi_{_{5}}$           | 0,094         | 0,63                       | 5,3                       | 1180            |



Slika 6. Krivulja nosivosti za korijensku (SRSS) kombinaciju modova za smjer x

Određivanje ciljanog ubrzanja za linearnu kombinaciju modova za smjer y prikazano je u tablici 5. Kao polazno ubrzanje u prvom koraku, pretpostavlja se ciljano ubrzanje dobiveno za prvi vektor, što iznosi  $a_{gr,1} = 0,52$  g. Dobiveno ciljano ubrzanje iznosi  $a_{ar,t} = 0,17$  g.

Na slici 7. prikazani su vektori opterećenja svih sudjelujućih modova, krivulja nosivosti i redoslijed nastajanja plastifikacijskih zglobova za linearnu kombinaciju modova za smjer *y*.

Pronalaženje ciljanog ubrzanja za SRSS kombinaciju modova za smjer y prikazano je u tablici 6. Ciljano ubrzanje iznosi  $a_{grt}$  = 0,21 g. Pokazalo se da je i za smjer y linearna kombinacija relevantna,

### Ciljano ubrzanje u višemodalnoj metodi naguravanja A/B okvira

| a <sub>gr,i</sub> | <b>a</b> <sub>s,1</sub> | F,   | <b>a</b> | F_2  | <b>a</b> <sub>s,3</sub> | F3  | a     | $F_4$ | <b>a</b> | F <sub>5</sub> | $\Sigma F_i$ | F    | $F_L / \Sigma F_i$ | $\delta_{_{1}}$ | $\delta_2$ | $\delta_{_{\mathcal{J}}}$ | $\delta_4$ | $\delta_{_{5}}$ |
|-------------------|-------------------------|------|----------|------|-------------------------|-----|-------|-------|----------|----------------|--------------|------|--------------------|-----------------|------------|---------------------------|------------|-----------------|
| 0,52              | 0,209                   | 1418 | 1,355    | 1169 | 1,950                   | 669 | 0,975 | 155   | 0,765    | 39,8           | 3451         | 2105 | 0,61               | 0,402           | 2,606      | 3,750                     | 1,875      | 1,471           |
| 0,34              | 0,195                   | 1323 | 0,976    | 842  | 1,275                   | 437 | 0,638 | 101   | 0,510    | 26,5           | 2731         | 2021 | 0,74               | 0,574           | 2,871      | 3,750                     | 1,876      | 1,500           |
| 0,20              | 0,183                   | 1242 | 0,631    | 545  | 0,750                   | 257 | 0,383 | 61    | 0,300    | 15,6           | 2120         | 1929 | 0,91               | 0,915           | 3,155      | 3,750                     | 1,915      | 1,500           |
| 0,17              | 0,166                   | 1126 | 0,535    | 462  | 0,638                   | 219 | 0,525 | 84    | 0,413    | 21,4           | 1912         | 1912 | 1,00               | 0,976           | 3,147      | 3,753                     | 3,088      | 2,429           |
| 0,15              | 0,153                   | 1038 | 0,495    | 427  | 0,563                   | 193 | 0,495 | 79    | 0,390    | 20,3           | 1757         | 1863 | 1,06               | 1,020           | 3,300      | 3,753                     | 3,300      | 2,600           |

Tablica 5. Ciljano ubrzanje pri linearnoj kombinaciji modova za smjer y

Tablica 6. Ciljano ubrzanje pri korijenskoj (SRSS) kombinaciji modova za smjer y

| a <sub>gr,i</sub> | <b>a</b> <sub>s,1</sub> | F,   | a <sub>gr,i</sub> /2 | <b>a</b> <sub>s,2</sub> | $F_2$ | а <sub>s,3</sub> | F3  | <b>a</b> <sub>s,4</sub> | F <sub>4</sub> | <b>a</b> <sub>s,5</sub> | $F_{5}$ | $\Sigma F_i$ | F <sub>srss</sub> | $F_{SRSS}/\Sigma F_{i}$ | $\delta_{_{1}}$ | $\delta_2$ | $\delta_{_{\mathcal{B}}}$ | $\delta_4$ | $\delta_{5}$ |
|-------------------|-------------------------|------|----------------------|-------------------------|-------|------------------|-----|-------------------------|----------------|-------------------------|---------|--------------|-------------------|-------------------------|-----------------|------------|---------------------------|------------|--------------|
| 0,52              | 0,209                   | 1418 | 0,26                 | 0,750                   | 647   | 0,975            | 334 | 0,443                   | 70,4           | 0,342                   | 17,8    | 2488         | 1965              | 0,79                    | 0,402           | 1,442      | 1,875                     | 0,852      | 0,658        |
| 0,34              | 0,195                   | 1323 | 0,17                 | 0,530                   | 457   | 0,638            | 219 | 0,285                   | 45,3           | 0,225                   | 11,7    | 2056         | 1871              | 0,91                    | 0,574           | 1,559      | 1,876                     | 0,838      | 0,662        |
| 0,22              | 0,189                   | 1282 | 0,11                 | 0,389                   | 336   | 0,413            | 142 | 0,165                   | 26,2           | 0,158                   | 8,2     | 1794         | 1758              | 0,98                    | 0,859           | 1,768      | 1,877                     | 0,750      | 0,718        |
| 0,21              | 0,186                   | 1262 | 0,105                | 0,380                   | 328   | 0,394            | 135 | 0,150                   | 23,9           | 0,147                   | 7,6     | 1756         | 1757              | 1,00                    | 0,886           | 1,810      | 1,876                     | 0,714      | 0,700        |
| 0,20              | 0,183                   | 1242 | 0,10                 | 0,347                   | 300   | 0,375            | 129 | 0,135                   | 21,5           | 0,130                   | 6,8     | 1698         | 1732              | 1,02                    | 0,915           | 1,735      | 1,875                     | 0,675      | 0,650        |



Slika 7. Krivulja nosivosti za linearnu kombinaciju modova za smjer y



Slika 8. Krivulja nosivosti za korijensku (SRSS) kombinaciju modova za smjer y

jer slom konstrukcije nastupa pri manjem ciljanom ubrzanju ( $a_{grt} = 0,17$ g) za razliku od ciljanog ubrzanja kod korijenske kombinacije ( $a_{art} = 0,21$  g).

Na slici 8. prikazani su vektori opterećenja sudjelujućih modova, krivulja nosivosti i redoslijed nastajanja plastifikacijskih zglobova za SRSS kombinaciju za smjer *y*.

## 3.2. Primjer 2: 9-katni prostorni a/b okvir

# 3.2.1. Opis modela i proračun vektora opterećenja

Analizira se 9-katni prostorni a/b okvir dimenzija kako je prikazano na slici 9.a. Dimenzije i diskretizacija poprečnih presjeka greda prikazani su na slikama 9.d i 9.e, a stupova na slici 9.f. Svojstva poprečnih presjeka dodijeljena su okviru kako je pokazano na slici 9.c. Raspodijeljeno opterećenje je zadano po gredama kako je prikazano na slici 9.b, a koncentrirane sile su zadane u čvorovima na svim križanjima greda i stupova. Za proračun vlastitih vektora zadane su koncentrirane mase (slika 9.b) i modul materijala *E*=24.38 GPa, kao



Slika 9. Primjer 2: a) prostorni okvir; b) opterećenje po gredama i koncentrirane mase; c) oznake poprečnih presjeka; d)-f) diskretizacije poprečnih presjeka; g) model armaturnog čelika; h) model betona

ishodišni modul na modelu betona (slika 9.h). Za proračun krivulje nosivosti korišten je numerički model betona i armaturnog čelika prikazan na slikama 9.g i 9.h. Ukupna težina modela iznosi *W*=14903 kN, a ukupna masa modela iznosi *M*=1519.2 tone.

Rješenjem linearne dinamičke zadaće dobiveni su vlastiti vektori φ<sub>i</sub>, te podaci o pripadajućim periodima T<sub>i</sub> i sudjelujućim masama m<sub>ei</sub>, što je prikazano u tablici 7.

Tablica 7. Svojstva vektora horizontalnog opterećenja za smjer x

| Vektor                  | <i>T<sub>i</sub></i> [s] | <b>m</b> <sub>ei</sub> [%] | m <sub>ei</sub> [t] | F <sub>fi</sub> [kN] |
|-------------------------|--------------------------|----------------------------|---------------------|----------------------|
| $\Phi_{_1}$             | 2,298                    | 79,87                      | 1213,4              | 1330                 |
| $\Phi_2$                | 0,746                    | 10,37                      | 157,5               | 1530                 |
| $\Phi_{_{\mathcal{J}}}$ | 0,420                    | 3,87                       | 58,8                | 2035                 |
| $\Phi_4$                | 0,282                    | 2,20                       | 33,4                | 1770                 |
| $\Phi_{_5}$             | 0,207                    | 1,38                       | 21,0                | 2490                 |

## 3.2.2. Određivanje ciljanog ubrzanja za smjer x

Određivanje ciljanog ubrzanja za linearnu kombinaciju modova za smjer *x* prikazano je u tablici 8. Kao polazno ubrzanje u prvom koraku, pretpostavlja se ciljano ubrzanje dobiveno za prvi vektor, što iznosi  $a_{gr,i} = 0.92$ g. Dobiveno ciljano ubrzanje iznosi  $a_{art} = 0.19$ g.

Na slici 10. prikazani su vektori opterećenja svih sudjelujućih modova, krivulja nosivosti i redoslijed nastajanja plastifikacijskih zglobova za linearnu kombinaciju modova za smjer *x*.

Rezultati za korijensku (SRSS) kombinaciju modova za smjer *x* su prikazani tablici 9. Ciljano ubrzanje iznosi  $a_{grt} = 0.25g$ . Usporedbom dobivenih ciljanih ubrzanja može se zaključiti da je linearna kombinacija modova kod 9-katnog okvira bitno nepovoljnija od korijenske (SRSS) kombinacije jer slom konstrukcije nastupa pri manjem ciljanom ubrzanju ( $a_{grt} = 0,19$ g) za razliku od ciljanog ubrzanja kod SRSS kombinacije modova ( $a_{art} = 0,25$  g), što je isti slučaj kao i kod 5-katnog okvira.

## Ciljano ubrzanje u višemodalnoj metodi naguravanja A/B okvira

| a <sub>gr,i</sub> | <b>a</b> <sub>s,1</sub> | F,   | <b>a</b> <sub>s,2</sub> | F_2  | <b>a</b> <sub>s,3</sub> | F3   | <b>a</b> <sub>s,4</sub> | $F_4$ | <b>a</b> <sub>s,5</sub> | $F_{5}$ | $\Sigma F_i$ | $F_{L}$ | $F_L / \Sigma F_i$ | $\delta_{\tau}$ | $\delta_2$ | $\delta_{_{\mathcal{B}}}$ | $\delta_4$ | $\delta_5$ |
|-------------------|-------------------------|------|-------------------------|------|-------------------------|------|-------------------------|-------|-------------------------|---------|--------------|---------|--------------------|-----------------|------------|---------------------------|------------|------------|
| 0,92              | 0,112                   | 1330 | 0,923                   | 1426 | 2,239                   | 1292 | 2,700                   | 886   | 3,161                   | 651     | 5585         | 2681    | 0,48               | 0,121           | 1,003      | 2,434                     | 2,935      | 3,436      |
| 0,50              | 0,107                   | 1274 | 0,694                   | 1072 | 1,428                   | 824  | 1,749                   | 574   | 1,858                   | 383     | 4126         | 2476    | 0,60               | 0,214           | 1,388      | 2,856                     | 3,498      | 3,716      |
| 0,20              | 0,073                   | 869  | 0,448                   | 692  | 0,689                   | 398  | 0,750                   | 246   | 0,750                   | 155     | 2359         | 2123    | 0,90               | 0,365           | 2,240      | 3,445                     | 3,750      | 3,750      |
| 0,19              | 0,071                   | 845  | 0,318                   | 491  | 0,660                   | 381  | 0,713                   | 234   | 0,713                   | 147     | 2098         | 2098    | 1,00               | 0,374           | 1,674      | 3,474                     | 3,753      | 3,753      |
| 0,18              | 0,068                   | 809  | 0,307                   | 474  | 0,623                   | 359  | 0,675                   | 221   | 0,675                   | 139     | 2004         | 2164    | 1,08               | 0,378           | 1,706      | 3,461                     | 3,750      | 3,750      |

#### Tablica 8. Ciljano ubrzanje pri linearnoj kombinaciji modova za smjer x

Tablica 9. Ciljano ubrzanje pri $\,$ korijenskoj (SRSS) kombinaciji modova za smjerx

| a <sub>gr,i</sub> | а <sub>s,1</sub> | F,   | a <sub>gr,i</sub> /2 | а <sub>s,2</sub> | <i>F</i> <sub>2</sub> | а <sub>s,3</sub> | F,  | а <sub>s,4</sub> | <i>F</i> <sub>4</sub> | а <sub>,,5</sub> | $F_{_{5}}$ | $\Sigma F_i$ | F <sub>SRSS</sub> | $F_{SRSS}/\Sigma F_{i}$ | $\delta_{\tau}$ | $\delta_2$ | $\delta_{_{\mathcal{J}}}$ | $\delta_4$ | $\delta_{_{5}}$ |
|-------------------|------------------|------|----------------------|------------------|-----------------------|------------------|-----|------------------|-----------------------|------------------|------------|--------------|-------------------|-------------------------|-----------------|------------|---------------------------|------------|-----------------|
| 0,92              | 0,112            | 1330 | 0,46                 | 0,651            | 1006                  | 1,350            | 779 | 1,637            | 537                   | 1,725            | 355        | 4010         | 2085              | 0,52                    | 0,122           | 0,708      | 1,467                     | 1,779      | 1,875           |
| 0,50              | 0,107            | 1274 | 0,25                 | 0,391            | 604                   | 0,845            | 488 | 0,938            | 308                   | 0,938            | 193        | 2866         | 2064              | 0,72                    | 0,214           | 0,782      | 1,690                     | 1,876      | 1,876           |
| 0,30              | 0,093            | 1107 | 0,15                 | 0,260            | 402                   | 0,523            | 302 | 0,538            | 176                   | 0,563            | 116        | 2103         | 2439              | 1,16                    | 0,310           | 0,867      | 1,743                     | 1,793      | 1,877           |
| 0,25              | 0,085            | 1011 | 0,125                | 0,225            | 348                   | 0,442            | 255 | 0,469            | 154                   | 0,469            | 97         | 1865         | 1865              | 1,00                    | 0,340           | 0,900      | 1,768                     | 1,876      | 1,876           |
| 0,20              | 0,073            | 869  | 0,10                 | 0,182            | 281                   | 0,354            | 204 | 0,375            | 123                   | 0,375            | 77         | 1555         | 1368              | 0,88                    | 0,365           | 0,910      | 1,770                     | 1,875      | 1,875           |



Slika 10. Krivulja nosivosti za linearnu kombinaciju modova za smjer x



Slika 11. Krivulja nosivosti za korijensku (SRSS) kombinaciju modova za smjer *x* 

Na slici 11. prikazani su vektori opterećenja svih sudjelujućih modova, krivulja nosivosti i redoslijed nastajanja plastifikacijskih zglobova za korijensku (SRSS) kombinaciju modova za smjer *x*.

## 3.2.3. Određivanje ciljanog ubrzanja za smjer *y*

U nastavku su prikazani rezultati analize za smjer y. Svojstva vektora opterećenja za svaki pojedini mod su prikazana u tablici 10.

Tablica 10. Svojstva vektora horizontalnog opterećenja za smjer y

| Vektor                  | <i>T<sub>i</sub></i> [s] | <b>m</b> <sub>ei</sub> [%] | m <sub>ei</sub> [t] | $F_{_{ff}}[kN]$ |
|-------------------------|--------------------------|----------------------------|---------------------|-----------------|
| $\Phi_{_1}$             | 2,715                    | 78,91                      | 1198,8              | 1410            |
| $\Phi_2$                | 0,869                    | 10,59                      | 160,9               | 1735            |
| $\Phi_{_{\mathcal{J}}}$ | 0,478                    | 4,10                       | 62,3                | 1965            |
| $\Phi_{_4}$             | 0,317                    | 1,60                       | 24,3                | 2340            |
| $\Phi_{_{5}}$           | 0,224                    | 1,40                       | 21,3                | 2435            |

Određivanje ciljanog ubrzanja za linearnu kombinaciju modova za smjer y prikazano je u tablici 11. Kao polazno ubrzanje u prvom koraku, pretpostavlja se ciljano ubrzanje dobiveno za prvi

| a <sub>gr,i</sub> | <b>a</b> <sub>s,1</sub> | F,   | а <sub>s,2</sub> | F <sub>2</sub> | а <sub>s,3</sub> | F3   | a     | $F_4$ | a     | $F_{5}$ | $\Sigma F_i$ | F_   | $F_L / \Sigma F_i$ | $\delta_{1}$ | $\delta_2$ | $\delta_{_{\mathcal{I}}}$ | $\delta_4$ | $\delta_5$ |
|-------------------|-------------------------|------|------------------|----------------|------------------|------|-------|-------|-------|---------|--------------|------|--------------------|--------------|------------|---------------------------|------------|------------|
| 1,05              | 0,120                   | 1410 | 0,917            | 1447           | 2,313            | 1413 | 3,900 | 928   | 3,606 | 754     | 5952         | 2619 | 0,44               | 0,114        | 0,873      | 2,203                     | 3,714      | 3,434      |
| 0,40              | 0,097                   | 1141 | 0,494            | 780            | 1,063            | 649  | 1,500 | 357   | 1,500 | 314     | 3240         | 2203 | 0,68               | 0,243        | 1,235      | 2,658                     | 3,750      | 3,750      |
| 0,20              | 0,063                   | 741  | 0,309            | 488            | 0,588            | 359  | 0,750 | 179   | 0,750 | 157     | 1923         | 1846 | 0,96               | 0,315        | 1,545      | 2,940                     | 3,750      | 3,750      |
| 0,18              | 0,058                   | 682  | 0,277            | 437            | 0,537            | 328  | 0,675 | 161   | 0,675 | 141     | 1749         | 1749 | 1,00               | 0,322        | 1,539      | 2,983                     | 3,750      | 3,750      |
| 0,17              | 0,056                   | 659  | 0,265            | 418            | 0,500            | 306  | 0,638 | 152   | 0,638 | 133     | 1667         | 1834 | 1,10               | 0,329        | 1,559      | 2,941                     | 3,753      | 3,753      |





Slika 12. Krivulja nosivosti za linearnu kombinaciju modova za smjer y



Slika 13. Krivulja nosivosti za korijensku (SRSS) kombinaciju modova za smjer y

| Tablica 12. Ciljano ubrzanje pri | korijenskoj (SRSS) | kombinaciji modova | za smjer y |
|----------------------------------|--------------------|--------------------|------------|
|----------------------------------|--------------------|--------------------|------------|

vektor, što iznosi  $a_{gr,1}$  = 1,05 g. Dobiveno ciljano ubrzanje iznosi  $a_{nrt}$  = 0,18 g.

Na slici 12. prikazani su vektori opterećenja sudjelujućih modova, krivulja nosivosti i redoslijed nastajanja plastifikacijskih zglobova za linearnu kombinaciju za smjer y.

Postupak pronalaženja ciljanog ubrzanja za korijensku (SRSS) kombinaciju modova za smjer *y* prikazan je u tablici 12. Ciljano ubrzanje iznosi  $a_{art}$  = 0,245 g.

Pokazalo se da je i za smjer *y* linearna kombinacija modova kod 9-katnog okvira također relevantna, jer slom konstrukcije nastupa pri manjem ciljanom ubrzanju ( $a_{grt} = 0,18$ g) za razliku od ciljanog ubrzanja kod korijenske (SRSS) kombinacije modova ( $a_{grt} = 0,245$  g), što je isti slučaj kao i kod 5-katnog okvira.

Naslici 13. prikazani su vektori opterećenja sudjelujućih modova, krivulja nosivosti i redoslijed nastajanja plastifikacijskih zglobova za SRSS kombinaciju za smjer *y*.

# 4. Test pojavnosti linearne i korijenske kombinacije modova

Postupak koji slijedi ima svrhu provjeriti koja je od navedenih kombinacija modova vjerojatnija u verifikaciji na skupu od slijedećih pet odabranih

| <b>a</b> <sub>gr,i</sub> | <b>a</b> <sub>s,1</sub> | F,   | a <sub>gr,i</sub> /2 | <b>a</b> <sub>s,2</sub> | <i>F</i> <sub>2</sub> | а <sub>s,3</sub> | F3  | <b>a</b> <sub>s,4</sub> | $F_4$ | <b>a</b> <sub>s,5</sub> | $F_{5}$ | $\Sigma F_i$ | F <sub>srss</sub> | $F_{SRSS}/\Sigma F_{i}$ | $\delta_1$ | $\delta_{z}$ | $\delta_{_{\mathcal{J}}}$ | $\delta_4$ | $\delta_{5}$ |
|--------------------------|-------------------------|------|----------------------|-------------------------|-----------------------|------------------|-----|-------------------------|-------|-------------------------|---------|--------------|-------------------|-------------------------|------------|--------------|---------------------------|------------|--------------|
| 1,05                     | 0,120                   | 1410 | 0,525                | 0,610                   | 963                   | 1,300            | 794 | 1,968                   | 468   | 1,879                   | 393     | 4028         | 2175              | 0,54                    | 0,114      | 0,581        | 1,238                     | 1,874      | 1,790        |
| 0,40                     | 0,097                   | 1141 | 0,20                 | 0,309                   | 488                   | 0,588            | 359 | 0,750                   | 179   | 0,750                   | 157     | 2323         | 1812              | 0,78                    | 0,243      | 0,773        | 1,470                     | 1,875      | 1,875        |
| 0,245                    | 0,073                   | 858  | 0,123                | 0,207                   | 327                   | 0,357            | 218 | 0,459                   | 109   | 0,459                   | 96      | 1608         | 1608              | 1,00                    | 0,298      | 0,845        | 1,457                     | 1,873      | 1,873        |
| 0,24                     | 0,072                   | 847  | 0,12                 | 0,203                   | 320                   | 0,350            | 214 | 0,450                   | 107   | 0,450                   | 94      | 1582         | 1661              | 1,05                    | 0,300      | 0,846        | 1,458                     | 1,875      | 1,875        |
| 0,20                     | 0,063                   | 741  | 0,10                 | 0,173                   | 273                   | 0,295            | 180 | 0,375                   | 89    | 0,375                   | 78      | 1362         | 1702              | 1,25                    | 0,315      | 0,865        | 1,475                     | 1,875      | 1,875        |

akcelelograma stvarnih potresa: Montenegro (Crna Gora)-1979, Campano Lucano (Italija)-1980, Aigion (Grčka)-1995, Strofades (Grčka)-1997 i Olfus (Island)-2008, prikazanih na slici 14. Zapisi akcelelograma su preuzeti iz [18].

Verifikacija se obavlja na linearnoj i nelinearnoj razini za sustave s jednim stupnjem slobode uzete kao modovi dobiveni za modele a/b okvira iz *primjera 1* i *2*. Dinamički odgovor pojedinog sustave s jednim stupnjem slobode dobiven je Newmarkovom metodom srednjeg ubrzanja. Numerička integracija ostvarena je računalnim programom napisanim u jeziku C++ prema postupku prikazanom u [19].



Slika 14. Akcelelogrami pet potresa, [18]

## 4.1. Verifikacija linearne i korijenske kombinacije modova na linearnoj razini

Najprije je analiziran 5-katni prostorni a/b okvir iz *primjera* 1. Izračunate su poprečne sile u presjeku pri osnovi proračunskog modela (*F*) kao vremenske funkcije za svaki od pet vlastitih modova. Pri tome je krutost *k* linearnog sustava s jednim stupnjem slobodedefinirana preko poznatog perioda *T<sub>i</sub>* i pripadne sudjelujuće mase *m<sub>i</sub>* koja odgovara pojedinom vlastitom vektoru  $\Phi_i$ . Uvedeno je relativno mjerilo sila prema kojem je najveća sila od svih modova (|*F<sub>max</sub>*|) jednaka vrijednosti 1.00, a ostale su relativne prema njoj.

Na slici 15. prikazan je dijagram poprečne sile u presjeku pri osnovi proračunskog modela (*F*) u ovisnosti o vremenu za svih pet vlastitih modova za primjer 5-katnog a/b okvira opterećenog u *x* smjeru potresnom pobudom Montenegro. Uočava se da u relativnom mjerilu sila, najvećem iznosu sile od svih pet modova (|*F*<sub>max</sub>|=1135 kN) odgovara vrijednost 1.00.



Slika 15. Poprečne sile u presjeku pri osnovi proračunskog modela 5-katnog a/b okvira svih pet modova u ovisnosti o vremenu za potresnu pobudu Montenegro u x smjeru

Maksimalne vrijednosti poprečnih sila u presjeku pri osnovi proračunskog modela svih modova koje su prikazane u tablicama 13. do 16., usljed djelovanja pet odabranih zapisa potresa, dobivene su na analogan način.

U tablici 13. dani su rezultati analize za smjerove x i y, koji prikazuju istovremenu najnepovoljniju kombinaciju linearne superpozicije modova  $F_L$  kao i najnepovoljniju kombinaciju kvadratnog korijena iz sume kvadrata modova  $F_{cpsc}$ 

Istovijetni postupak proveden je za analizu 9-katnog linearnog prostornog a/b okvira iz *primjera 2*, a rezultati analize su prikazani u tablici 14.

Prikazani rezultati dinamičkog odgovora za linearni sustav prema tablicama 13. i 14. pokazuju da je linearna kombinacija modova  $F_{\iota}$  učestalije nepovoljnija od korijenske kombinacije sume kvadrata modova  $F_{srss}$ 

Tablica 13. Usporedba linearne (L) i korijenske (SRSS) kombinacije modova za 5-katni a/b okvir

| Monte                                        | negro   | - 5-kat           | ni a/b o  | kvir - I | smjer x        |         | Monte  | negro                                | - 5-kat           | nia/bo    | - Novir - I | smjer y       |         |  |  |
|----------------------------------------------|---------|-------------------|-----------|----------|----------------|---------|--------|--------------------------------------|-------------------|-----------|-------------|---------------|---------|--|--|
| F treat                                      | F 2max  | F <sub>3max</sub> | Fanax     | F Smar   | u leto vol     | lama t  | F tmax | Famar                                | F <sub>3max</sub> | Fanar     | F Smax      | u leta uri    | lama f  |  |  |
| 0.72                                         | 0.47    | 0.25              | 0.03      | 0.03     | - 1310 Frig    | panno i | 1.00   | 0.62                                 | 0.59              | 0.31      | 0.03        | 0 /310 Mg     | enre i  |  |  |
| Finin                                        | F Junio | F 3min            | Famin     | Famin    | FL -0.98       |         | Finin  | F <sub>2min</sub>                    | F 3min            | F denie   | Famin       | FL            | -1.31   |  |  |
| -1.00                                        | -0.34   | -0.31             | -0.03     | -0.03    | F 1813         | 1.09    | -1.00  | -0.64                                | -0.59             | -0.32     | -0.03       | F 3833        | 1.13    |  |  |
| Campano Lucano - 5-katni a/b okvir - smjer x |         |                   |           |          |                |         | Camp   | ano Lu                               | cano -            | 5-katn    | i a/b ol    | kvir - smje   | ry      |  |  |
| Finar                                        | F 2max  | F 3max            | Famer     | Former   | as into uni    | in ma d | Finar  | F 2mar                               | Famar             | Famer     | F Smar      | a lata uni    | in mark |  |  |
| 1.00                                         | 0.38    | 0.29              | 0.02      | 0.02     | a isto vit     | penne z | 0.97   | 0.66                                 | 0.31              | 0.21      | 0.01        | a isto vrij   | eme t   |  |  |
| Ftmin                                        | F Junio | F <sub>3min</sub> | Famin     | Famin    | FL             | 0.91    | Ftmin  | F <sub>2min</sub>                    | F 3min            | F Amin    | Famin       | FL            | 1.10    |  |  |
| -0.99                                        | -0.51   | -0.30             | -0.02     | -0.03    | Faesa          | 1.00    | -1.00  | -0.77                                | -0.35             | -0.19     | -0.02       | Faesa         | 1.01    |  |  |
| Algion - S-katni alb okvir - smier x         |         |                   |           |          |                |         |        | Aigion - 5-katni a/b okvir - smjer y |                   |           |             |               |         |  |  |
| Finn                                         | Fame    | Fame              | Firm      | Farm     |                |         | Finn   | Farmer                               | Fame              | FARM      | Farm        |               |         |  |  |
| 1.00                                         | 0.94    | 0.59              | 0.03      | 0.03     | a isto vit     | eme r   | 0.91   | 0.70                                 | 0.87              | 0.13      | 0.02        | a rato vrij   | eme t   |  |  |
| Ftmin                                        | Famin   | F Junio           | Famin     | Famin    | FL             | -1.90   | Frain  | Famin                                | F 3min            | Famin     | Famin       | FL            | -1.59   |  |  |
| -0.94                                        | -1.00   | -0.61             | -0.03     | -0.04    | F 1911         | 1.25    | -1.00  | -0.70                                | -0.80             | -0.14     | -0.03       | F 1811        | 1.19    |  |  |
| Strofa                                       | des - 5 | katni             | a/b ok    | rir - sm | jer x          |         | Strofa | des - 6                              | -katni            | a/b ok    | rir - sm    | jer y         |         |  |  |
| Finar                                        | Famar   | Famue             | Famer     | Former   | an inter and   |         | Finar  | Famor                                | Famar             | Famer     | F Smar      | an index and  |         |  |  |
| 1.00                                         | 0.46    | 0.21              | 0.02      | 0.02     | a isto vij     | eme t   | 1.00   | 0.48                                 | 0.25              | 0.09      | 0.01        | a isto vij    | eme t   |  |  |
| Finin                                        | F Jonie | F <sub>3min</sub> | Famin     | Famin    | FL             | -0.97   | Finin  | F <sub>2min</sub>                    | F 3min            | F denie   | Famin       | FL            | -1.02   |  |  |
| -0.97                                        | -0.50   | -0.22             | -0.01     | -0.02    | F 1811         | 1.00    | -0.92  | -0.48                                | -0.26             | -0.10     | -0.01       | F 3833        | 1.00    |  |  |
| Olfus                                        | - 5-kat | ni a/b c          | okvir - I | umjer a  | r              |         | Olfus  | - S-kat                              | ni a/b c          | okvir - I | umjer y     | ,             |         |  |  |
| Finar                                        | F 2max  | Famue             | Famer     | Former   | an desta surel |         | Finan  | Famir                                | Famar             | Famer     | F Smar      | an desta sund |         |  |  |
| 0.99                                         | 0.69    | 0.45              | 0.07      | 0.06     | a isto vij     | penne z | 1.00   | 0.54                                 | 0.40              | 0.23      | 0.02        | a isto vinj   | eme t   |  |  |
| Finin                                        | F Imin  | F 3min            | Fanin     | F Smin   | FL             | 1.15    | Finin  | F 2min                               | F 3min            | F inin    | F smin      | FL            | 1.26    |  |  |
| -1.00                                        | -0.66   | -0.43             | -0.08     | -0.06    | Faesa          | 1.04    | -0.91  | -0.47                                | -0.36             | -0.22     | -0.02       | Farss         | 1.05    |  |  |

Tablica 15. Linearna (L) i korijenska (SRSS) kombinacija nelinearnog modela za 5-katni a/b okvir

| Monte                                | negro             | - 5-kat           | nia/bo         | okvir - t      | smjer x          |                   | Monte                                        | negro             | - 5-kat           | ni a/b o       | okvir - t      | umjer y       |         |  |  |
|--------------------------------------|-------------------|-------------------|----------------|----------------|------------------|-------------------|----------------------------------------------|-------------------|-------------------|----------------|----------------|---------------|---------|--|--|
| F 1max<br>0.96                       | F 2mar<br>0.58    | F 3max<br>0.67    | F 4mer<br>0.10 | F Smar<br>0.03 | u isto vrijeme t |                   | F tmax<br>1.00                               | F 2max<br>0.62    | F 3mar<br>0.59    | F 4max<br>0.31 | F 5max<br>0.03 | u isto vri    | jeme t  |  |  |
| Frain                                | F 2min            | Fanis             | Famin          | F Amin         | F.               | -1.89             | F tonio                                      | F 2min            | F Jonio           | F Annie        | Famin          | FL            | 1.34    |  |  |
| -1.00                                | -0.56             | -0.66             | -0.09          | -0.03          | F SPSS           | 1.18              | -1.00                                        | -0.64             | -0.59             | -0.32          | -0.03          | F 5855        | 1.03    |  |  |
| Camp                                 | ano Lu            | cano -            | 5-katn         | ia/bol         | kvir - smje      | r x               | Campano Lucano - 5-katni a/b okvir - smjer y |                   |                   |                |                |               |         |  |  |
| F tmax                               | F <sub>2mar</sub> | F 3max            | Famer          | F tmax         | u into uni       | u isto unitemo f  |                                              | F 2max            | F 3mar            | Famar          | Finar          | u inte uni    | lama (  |  |  |
| 1.00                                 | 0.38              | 0.29              | 0.02           | 0.02           |                  |                   | 0.97                                         | 0.66              | 0.31              | 0.21           | 0.01           | a rate rig    | jenne i |  |  |
| Ftmin                                | F <sub>2min</sub> | F <sub>3min</sub> | Fanin          | Finin          | FL               | 1.26              | F tmin                                       | F <sub>2min</sub> | F <sub>3min</sub> | F denis        | Famin          | FL            | 1.73    |  |  |
| -0.99                                | -0.51             | -0.30             | -0.02          | -0.03          | FLASS            | 1.01              | -1.00                                        | -0.77             | -0.35             | -0.19          | -0.02          | Fants         | 1.11    |  |  |
| Aigion - S-katni alb okvir - smjer x |                   |                   |                |                |                  |                   | Aigion - 5-katni a/b okvir - smjer y         |                   |                   |                |                |               |         |  |  |
| Finar                                | Famar             | F Jmax            | Famer          | Former         | u into uni       | u lata collecto d |                                              | F 2max            | F 3mar            | Famar          | Famer          | u jeto vrijem |         |  |  |
| 1.00                                 | 0.94              | 0.59              | 0.03           | 0.03           | 1                |                   | 0.91                                         | 0.70              | 0.87              | 0.13           | 0.02           | a rate mg     | penne : |  |  |
| Frain                                | Famin             | Famir             | Famin          | Famin          | FL               | -1.55             | Finie                                        | Famin             | Famin             | Famin          | Famin          | FL            | 1.76    |  |  |
| -0.94                                | -1.00             | -0.61             | -0.03          | -0.04          | Fants            | 1.05              | -1.00                                        | -0.70             | -0.80             | -0.14          | -0.03          | F 1911        | 1.16    |  |  |
| Strofa                               | des - t           | -<br>Katni        | a/b ok         | rir - sm       | ijer x           |                   | Strofades - 5-katni a/b okvir - smjer y      |                   |                   |                |                |               |         |  |  |
| Finar                                | Famar             | Famer             | Famer          | Famer          |                  |                   | Fina                                         | Famer             | Fanar             | Famer          | FAmer          | ··· late ···· |         |  |  |
| 1.00                                 | 0.46              | 0.21              | 0.02           | 0.02           | a isto wij       | enne z            | 1.00                                         | 0.48              | 0.25              | 0.09           | 0.01           | a isto vit    | yerne a |  |  |
| Frain                                | Famin             | Famir             | Fanin          | Famin          | FL.              | 1.38              | Famin                                        | F 2min            | F 3min            | Famin          | Famin          | FL.           | 1.26    |  |  |
| -0.97                                | -0.50             | -0.22             | -0.01          | -0.02          | Fanss            | 1.09              | -0.92                                        | -0.48             | -0.26             | -0.10          | -0.01          | F 5855        | 1.01    |  |  |
| Olfus                                | - 5-kat           | nia/bo            | okvir - 1      | smjer x        | r                |                   | Offus                                        | - 5-kat           | nia/bo            | -<br>skvir - : | smjer y        | ,             |         |  |  |
| Finar                                | F 2mar            | Fame              | Famer          | Firm           | . Internet       |                   | Ftmm                                         | Famer             | F 3mar            | Famer          | Finan          | . Internet    |         |  |  |
| 0.99                                 | 0.69              | 0.45              | 0.07           | 0.06           | u rato vrij      | eme t             | 1.00                                         | 0.54              | 0.40              | 0.23           | 0.02           | a rato vri    | yeme t  |  |  |
| Ftmin                                | Family            | Famir             | Famin          | Finin          | F.               | 1.48              | Finit                                        | Famin             | F 3min            | Family         | Finin          | FL            | -1.51   |  |  |
| -1.00                                | -0.66             | -0.43             | -0.08          | -0.06          | Fants            | 1.13              | -0.91                                        | -0.47             | -0.36             | -0.22          | -0.02          | Fance         | 1.07    |  |  |

## 4.2. Verifikacija linearne i korijenske kombinacije modova na nelinearnoj razini

Nelinearna razina se ostvaruje tako da se svaki mod tretira kao jedan nelinearan sustav s jenim stupnjem slobode. Nelinearna ciklička svojstva ovog sustava generiraju se iz pripadne krivulje nosivosti kako je prikazano na slici 16. i izrazu (6).



Slika 16. Ciklička krivulja nosivosti za nelinearni sustav

Tablica 14. Usporedba linearne (L) i korijenske (SRSS) kombinacije modova za 9-katni a/b okvir

| Monte                                | nearo             | - 9-kati          | ni alb c          | kvir - r | umier x           |                  |       | Monte                                | aearo             | - 9-kat           | oi alb o          | kvir - r | umler v |  |  |
|--------------------------------------|-------------------|-------------------|-------------------|----------|-------------------|------------------|-------|--------------------------------------|-------------------|-------------------|-------------------|----------|---------|--|--|
| E.                                   | E.                | F.                | F.                | E.       |                   | _                |       | E.                                   | E.                | E.                | E.                | E.       |         |  |  |
| 0.83                                 | 0.43              | 0.40              | 0.36              | 0.21     | u isto vri        | jeme t           |       | 0.71                                 | 0.26              | 0.68              | 0.16              | 0.22     | u isto  |  |  |
| 0.03                                 | 0.45              | 0.45              | 0.30              | 0.21     |                   | 1.45             |       | 0.71                                 | 0.25              | 0.00              | 0.10              | 0.22     | -       |  |  |
| P tesin                              | P Janin           | P Junio           | P desire          | P Seein  | r.                | +1,40            |       | P tonio                              | P Junio           | * Jose            | r amin            | P Smin   | <u></u> |  |  |
| -1.00                                | -0.59             | -0.46             | -0.27             | -0.26    | Farss             | 1.14             |       | -1.00                                | -0.39             | -0.65             | -0.14             | -0.21    | F ses   |  |  |
| Camp                                 | ano Lu            | cano -            | 9-katn            | ia/boł   | ovir - smje       | ex               |       | Camp                                 | ano Lu            | cano -            | 9-katn            | ia/boł   | wir-sr  |  |  |
| Finar                                | F <sub>2max</sub> | Famar             | Fenar             | Filmar   | an laste sont     | lama d           |       | Ftmax                                | F <sub>2max</sub> | Famar             | Famar             | Famar    | u late  |  |  |
| 1.00                                 | 0.63              | 0.50              | 0.30              | 0.25     | a isto vit        | u isto vrijeme t |       | 0.90                                 | 1.00              | 0.58              | 0.18              | 0.23     | 0 1810  |  |  |
| Ftmin                                | F <sub>2min</sub> | F <sub>3min</sub> | Famin             | Famin    | FL                | -1.36            |       | Finie                                | F 2min            | F Junio           | Fanin             | Ftmin    | FL      |  |  |
| -0.87                                | -0.47             | -0.60             | -0.25             | -0.25    | Farss             | 1.14             |       | -0.95                                | -0.80             | -0.72             | -0.25             | -0.21    | Fans    |  |  |
| Algion - 9-katni alb okvir - smier x |                   |                   |                   |          |                   |                  |       | Aigion - 9-katni a/b okvir - smjer y |                   |                   |                   |          |         |  |  |
| Finan                                | Firmer            | Famer             | Famar             | Former   | u inte uni        |                  | Finan | Firmer                               | F James           | Fdmax             | Famer             | u isto   |         |  |  |
| 0.90                                 | 0.52              | 0.51              | 0.84              | 0.40     | a isto viljeme t  |                  |       | 0.97                                 | 0.32              | 0.39              | 0.45              |          | 0.27    |  |  |
| Frain                                | Finin             | F <sub>3min</sub> | Fanin             | Formin   | FL                | -1.59            |       | Famir                                | F Inia            | F Josie           | Fanin             | F Smin   | FL      |  |  |
| -1.00                                | -0.53             | -0.59             | -0.99             | -0.35    | F 1811            | 1.15             |       | -1.00                                | -0.33             | -0.40             | -0.50             | -0.25    | Fans    |  |  |
| Strofa                               | des - 9           | -katni            | a/b ok            | rir - sm | jer x             |                  |       | Strofa                               | des - 1           | -katni            | a/b okv           | rir - sm | jer y   |  |  |
| Finar                                | Famar             | Fanar             | Famar             | Filmar   | and in the second |                  |       | Ftmax                                | F 2max            | Famer             | Fdmax             | Finar    | Inte    |  |  |
| 1.00                                 | 0.47              | 0.21              | 0.13              | 0.09     | u isto vri        | yeme t           |       | 0.79                                 | 0.80              | 0.25              | 0.18              | 0.19     | 0 1810  |  |  |
| Finin                                | F <sub>2min</sub> | F <sub>3min</sub> | F <sub>dmin</sub> | F tenin  | FL                | -1.13            |       | Funit                                | F <sub>2min</sub> | F <sub>3min</sub> | Fanin             | F Smin   | F.      |  |  |
| -0.98                                | -0.58             | -0.20             | -0.13             | -0.09    | Farss             | 1.02             |       | -1.00                                | -0.90             | -0.28             | -0.18             | -0.18    | Fans    |  |  |
| Olfus                                | - 9-kat           | nia/bo            | kvir - r          | smjer x  | r                 |                  |       | Ollus                                | - 9-kat           | nia/bo            | kvir - s          | umjer y  | ,       |  |  |
| Finan                                | Famer             | Famer             | Ferrer            | Famer    |                   |                  |       | Frank                                | Firmer            | Famer             | Famer             | Fame     |         |  |  |
| 1.00                                 | 0.20              | 0.25              | 0.17              | 0.24     | u isto vri        | reme t           |       | 0.94                                 | 0.29              | 0.32              | 0.20              | 0.41     | u isto  |  |  |
| Finin                                | F <sub>2min</sub> | F <sub>3min</sub> | Famin             | F Smin   | FL                | 0.97             |       | Finis                                | F 2min            | F Jonie           | F <sub>dmin</sub> | Fonin    | FL      |  |  |
| -0.92                                | -0.17             | -0.22             | -0.15             | -0.21    | Farms             | 1.00             |       | -1.00                                | -0.23             | -0.33             | -0.18             | -0.34    | F 185   |  |  |

Tablica 16. Linearna (L) i korijenska (SRSS) kombinacija nelinearnog modela za 9-katni a/b okvir

| Monte                                | negro                   | - 9-kat           | ni a/b c          | okvir - r | smjer x     |                  | Montenegro - 9-katni a/b okvir - smjer y     |                   |                   |          |         |                       |          |  |  |
|--------------------------------------|-------------------------|-------------------|-------------------|-----------|-------------|------------------|----------------------------------------------|-------------------|-------------------|----------|---------|-----------------------|----------|--|--|
| Finar                                | Famer                   | Famer             | Farras            | Formax    | u lata uni  |                  | Finar                                        | Farmer            | F 3max            | Fanar    | Former  | u lata uni            |          |  |  |
| 0.69                                 | 0.92                    | 0.69              | 0.52              | 0.32      | a iseo vrij | eme i            | 0.77                                         | 0.64              | 0.67              | 0.23     | 0.29    | a islo vig            | Pennie z |  |  |
| Finin                                | F 2min                  | F Jmin            | Famin             | Famin     | FL          | -2.02            | Ftmin                                        | F Junio           | F 3min            | F denie  | Famin   | FL                    | -1.49    |  |  |
| -0.78                                | -1.00                   | -0.66             | -0.60             | -0.34     | Fana        | 1.31             | -1.00                                        | -0.60             | -0.64             | -0.24    | -0.33   | Fanss                 | 1.13     |  |  |
| Camp                                 | ano Lu                  | cano -            | 9-katn            | i a/b ol  | kvir - smje | r x              | Campano Lucano - 9-katni a/b okvir - smjer y |                   |                   |          |         |                       |          |  |  |
| Finar                                | Famer                   | F <sub>3mar</sub> | Farmer            | Famar     | u lata uni  | u isto vrijeme t |                                              | Fanar             | F 3mar            | Fanar    | Famer   | and the second second |          |  |  |
| 0.73                                 | 0.95                    | 0.67              | 0.33              | 0.27      | u iseo viij |                  |                                              | 0.90              | 0.71              | 0.15     | 0.33    | a isto vitj           | lease t  |  |  |
| Frain                                | Famin                   | F Junio           | Famin             | Famin     | F.          | -1.68            | Frain                                        | Fanin             | F Junio           | Fanin    | Famin   | F.                    | -2.14    |  |  |
| -0.68                                | -1.00                   | -0.65             | -0.36             | -0.29     | Fansa       | 1.32             | -1.00                                        | -0.87             | -0.68             | -0.18    | -0.36   | F 5855                | 1.34     |  |  |
| Aigion - 9-katni a/b okvir - smjer x |                         |                   |                   |           |             |                  | Aigion - 9-katni a/b okvir - smjer y         |                   |                   |          |         |                       |          |  |  |
| Finar                                | Famer                   | F <sub>3mar</sub> | Farmer            | Famar     | u lete vel  | u isto vrijeme t |                                              | Farmer            | F <sub>3max</sub> | Famar    | Famer   | u isto vrijeme        |          |  |  |
| 0.89                                 | 0.92                    | 0.99              | 1.00              | 0.85      | a iseo virg |                  |                                              | 0.63              | 0.89              | 0.13     | 0.42    |                       |          |  |  |
| Finin                                | F <sub>2min</sub>       | F Janin           | F <sub>4min</sub> | Famin     | FL          | 2.12             | F tests                                      | Famin             | F 3min            | Famin    | Famin   | FL                    | 1.93     |  |  |
| -0.98                                | -0.89                   | -0.99             | -0.85             | -0.93     | Fanss       | 1.41             | -0.75                                        | -0.58             | -1.00             | -0.14    | -0.47   | Fanss                 | 1.13     |  |  |
| Strofa                               | des - 1                 | -katni            | a/b ok            | vir - sm  | ijer x      |                  | Strofades - 9-katni a/b okvir - smjer y      |                   |                   |          |         |                       |          |  |  |
| Finar                                | F 2mar                  | F <sub>3mar</sub> | Fdmax             | Famar     | u lata uni  |                  | Finar                                        | F <sub>2max</sub> | F 3mar            | Famar    | Finar   | u lata uni            | lama d   |  |  |
| 0.83                                 | 0.69                    | 0.62              | 0.21              | 0.18      | u isto vrij | perme t          | 0.93                                         | 0.83              | 0.68              | 0.16     | 0.33    | a rato vrij           | levane t |  |  |
| Frain                                | F <sub>2min</sub>       | F Janin           | F <sub>dmin</sub> | Famin     | FL          | 1.37             | F tests                                      | F Junio           | F 3min            | Famin    | Finin   | FL                    | 1.78     |  |  |
| -1.00                                | -0.75                   | -0.60             | -0.21             | -0.19     | FSASS       | 1.19             | -1.00                                        | -0.92             | -0.67             | -0.11    | -0.32   | F SASS                | 1.16     |  |  |
| Offus                                | - 9-kat                 | nia/bo            | skvir - r         | smier x   | r           |                  | Offus                                        | - 9-kat           | nia/bo            | kvir - : | smier y | ,                     |          |  |  |
| Finn                                 | Frank Frank Frank Frank |                   |                   |           |             | Finn             | Fame                                         | F                 | Finn              | F        |         |                       |          |  |  |
| 0.96                                 | 0.71                    | 1.00              | 0.44              | 0.25      | u isto vrij | eme t            | 0.96                                         | 0.66              | 0.53              | 0.27     | 0.24    | u isto vrijeme        |          |  |  |
| Ftmin                                | F <sub>2min</sub>       | F <sub>3min</sub> | F <sub>dmin</sub> | F Smin    | FL          | 1.92             | Ftmin                                        | F Junio           | F Junio           | Fania    | Finin   | FL                    | 1.53     |  |  |
| -0.97                                | -0.75                   | -0.90             | -0.38             | -0.26     | Fants       | 1.15             | -1.00                                        | -0.65             | -0.57             | -0.25    | -0.25   | Fanss                 | 1.06     |  |  |

Slici pripadajuće funkcije definirane su na način da imaju slijedeći analitički oblik:

$$f_{s1} = A\left(1 - e^{\frac{u-B}{C}}\right) + D$$

$$f_{s2} = -A\left(1 - e^{\frac{u-B}{C}}\right) + D$$

$$f_{s3} = \frac{A}{C}(u-B) + D$$
(6)

Funkcija  $f_{s_1}$ odgovara krivulji kapaciteta nosivosti za pojedini mod. Pomoću nje se definiraju koeficijenti *A* i *C* u izrazu (6). Funkcija  $f_{s_3}$  je linearna, a nagib joj odgovara početnoj krutosti sustava s jednim stupnjem slobode. Koeficijenti *B* i *D* računaju se u svakom vremenskom koraku i njima se definira translacija funkcija  $f_{s_1}$  i  $f_{s_2}$ po osi *u* za koeficijent *B*, odnosno po osi  $f_s$  za koeficijent *D*.

U tablici 15 prikazani su rezultati analize nelinearnih JS za smjerove x i y, koji prikazuju istovremenu najnepovoljniju kombinaciju linearne superpozicije modova  $F_{L}$  kao i najnepovoljniju korijensku kombinaciju modova  $F_{SRSS}$ 

Istovijetni postupak proveden je za analizu 9-katnog nelinearnog prostornog a/b okvira iz *primjera 2*, a rezultati analize su prikazani u tablici 16.

Prikazani rezultati dinamičkog odgovora za nelinearni sustav prema tablicama 15. i 16. pokazuju da je linearna kombinacija modova  $F_{L}$  u svim primjerima znatno nepovoljnija od korijenske kombinacije sume kvadrata modova  $F_{spss}$ 

# 5. Zaključak

U radu je prikazan postupak za određivanje ciljanog ubrzanja, definiranog kao najmanjeg ubrzanja osnove koje dovodi do graničnog stanja nosivosti konstrukcije pomoću višemodalnog pristupa naguravanja, što predstavlja najnižu potresnu otpornost. Postupak se temelji na uzastopnoj primjeni nelinearne analize konstrukcije višemodalnom metodom naguravanja i uzastopnim traženjem ciljanog ubrzanja.

Na osnovu dobivenih rezultata izlučenih na konkretnim primjerima može se zaključiti:

- Utjecaj viših modova, posebno drugog i trećeg moda, je vrlo značajan.
- Ciljano, odnosno najmanje, ubrzanje osnove nužno ne prouzrokuje najmanje horizontalne slomne sile u presjeku pri osnovi proračunskog modela. Pri tome ciljano ubrzanje uvijek je niže od graničnog ubrzanja svakog moda pojedinačno.
- Pokazuje se da je linearna (L) kombinacija modova kritičnija zbog manjeg ciljanog ubrzanja nego što ga daje korijenska (SRSS) kombinacija modova.

- Ciljanom ubrzanju pripadni opći slomni vektor oblikom se značajno razlikuje od oblika opterećenja prvog vektora ali i od oblika opterećenja s konstantnim ubrzanjem po visini konstrukcije sadržanim u EN 1998.
- Pojavnost linearne kombinacije i korijenske kombinacije modova, testirana na konkretnoj seriji potresnih zapisa, na linearnoj i nelinearnoj razini potvrđuje da je linearna kombinacija vjerojatnija od korijenske kombinacije sume kvadrata.
- Višemodalna metoda naguravanja apriori polazi od pretpostavke da su u stvarnom potresnom djelovanju svi relevantni modovi i aktivirani.
- Bez obzira na metodu kojom kombiniramo modove, praktična primjena višemodalnog pristupa pokazuje da je potresna otpornost, odnosno pouzdanost promatranih okvirnih a/b konstrukcija, niža od one prema kriteriju ciljanog pomaka u skladu s EN 1998 (Dodatak B).
- Uključivanje viših modova u prikazanim primjerima redovito značajno smanjuje granično vršno ubrzanje tla, a u nekim situacijama i za više od dva puta, što je znatno nepovoljnije od zahtjeva za rezervom u krivulji kapaciteta nosivosti od 150 % u odnosu na karakteristični ciljani pomak vrha konstrukcije.

# Zahvala

Ovo istraživanje je potpomognuto od strane Ministarstva znanosti, obrazovanja i sporta Republike Hrvatske (znanstveni projekt "Modeliranje granične nosivosti i stabilnosti konstrukcija pri velikim pomacima", broj: 083-0831541-1545). Autori cijene njihovu pomoć.

# LITERATURA

- European Committee for Standardization (CEN): EN 1998-1. Eurocode 8: Design of Structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings, Brussels, Belgium, 2004.
- [2] ATC, Seismic evaluation and retrofit of concrete buildings, ATC-40 Report, Applied Technology Council, Redwood City, California, 1996.
- [3] ATC, Improvement of nonlinear static seismic analysis procedures, FEMA 440 Report, Applied Technology Council, Redwood City, California, 2005.
- [4] Saiidi, M. & Sozen, M.A.: Simple Nonlinear Seismic Analysis of R/C Structures, Journal of the Structural Division, Vol. 107, No. 5, pp. 937-953, 1981.
- [5] Fajfar, P. & Fischinger, M.: Non-linear seismic analysis of RC buildings: Implications of a case study, European Earthquake Engineering, Vol. 1, pp. 31-43, 1987.
- [6] Fajfar, P. & Gašperšič, P.: The N2 method for the seismic damage analysis for RC buildings, Earthquake Engineering & Structural Dynamics, Vol. 25, pp. 23–67, 1996.

- [7] Fajfar, P.: A Nonlinear Analysis Method for Performance Based Seismic Design, Earthquake Spectra, Vol. 16, No.3, pp. 573-592, 2000.
- [8] Lagaros, N.D. & Fragiadakis, M.: Evaluation of ASCE-41, ATC-40 and N2 static pushover methods based on optimally designed buildings, Soil Dynamics and Earthquake Engineering, Vol. 31, pp. 77–90, 2011.
- [9] Chopra, A.K. & Goel, R.K.: A modal pushover analysis procedures for estimating seismic demands for buildings, Earthquake Engineering & Structural Dynamics, Vol. 31, No. 3, pp. 561–582, 2002.
- [10] Jiang, Y., Li, G. & Yang, D.: A modified approach of energy balance concept based multimode pushover analysis to estimate seismic demands for buildings, Engineering Structures, Vol. 32, No. 5, pp. 1272–1283, 2010.
- [11] Sasaki, K.K., Freeman, S.A. & Paret, T.F.: Multi-mode pushover procedure (MMP) - a method to identify the effects of higher modes in a pushover analysis, Proceedings of 6th U.S. National Conference on Earthquake Engineering, Seattle (Washington), 1998.

- [12] Kalkan, E. & Kunnath, S.K.: Assessment of current nonlinear static procedures for seismic evaluation of buildings, Engineering Structures, Vol. 29, pp. 305–316, 2007.
- [13] Chopra, A.K., Goel, R.K. & Chintanapakdee, C.: Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands, Earthquake Spectra, Vol. 20, No. 3, pp. 757-778, 2004.
- [14] Goel, R.K. & Chopra, A.K.: Role of higher-'mode" pushover analyses in seismic analysis of buildings, Earthquake Spectra, Vol. 21, No. 4, pp. 1027-1041, 2005.
- [15] Shakeri, K. & Mohebbi, M.: Single-run modal pushover procedure based on the modal shear and moment in the stories, Proceedings of 14th European Conference on Earthquake Engineering, Ohrid, Republic of Macedonia, pp. 6199-6207, 2010.
- [16] Trogrlić, B. & Mihanović, A.: The comparative body model in material and geometric nonlinear analysis of space R/C frames, Engineering Computations, Vol. 25, No. 2, pp. 155-171, 2008.
- [17] Trogrlić, B., Mihanović, A. & Nikolić, Ž.: Modified Modal Pushover Analysis of RC Frames, fib Symposium Prague 2011, Concrete engineering for excellence and efficiency, Proceedings, Publisher: Czech Concrete Society (CBS) / Czech fib National Member Group, Vol. 2, pp. 95-98, 2011.
- [18] European strong-motion database, http://www.isesd.hi.is/ ESD\_Local/frameset.htm, 04.04.2012.
- [19] Chopra, A.K.: Dynamics of structures: Theory and Applications to Earthquake Engineering, University of California at Berkeley, Third Edition, Prentice Hall, 2007.