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Generalized minimal nets in form finding of prestressed cable nets

Form finding problem of prestressed cable structures is formulated as a variational problem 
whose solutions are minimal and generalized minimal nets. Kinematic constrains are 
introduced that allow assignment of chosen lengths to elements. Application of Newton-
Krylov methods for solving nonlinear equations of equilibrium is analysed. Iterative application 
of force density method, where force densities in each iteration step are determined based 
on given conditions and results of previous step, is described and analyzed.
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Poopćene minimalne mreže u oblikovanju prednapetih konstrukcija od užadi  

Problem nalaženja oblika prednapetih konstrukcija od užadi formuliran je kao varijacijski 
problem čija su rješenja minimalne i poopćene minimalne mreže. Uvedena su kinematička 
ograničenja koja omogućuju zadavanje duljina odabranih štapova. Analizirana je primjena 
Newton-Krilovljevih metoda u rješavanju nelinearnih jednadžbi ravnoteže te je opisana 
i analizirana iteracijska primjena metode gustoća sila u kojoj se gustoće sila u nekom 
koraku određuju na temelju zadanih uvjeta i rezultata prethodnoga koraka.
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Verallgemeinerte Minimalnetze im Entwurf vorgespannter 
Seilkonstruktionen 

Das Problem der Formfindung vorgespannter Seilkonstruktionen ist als 
Variationsproblem formuliert, dessen Lösungen Minimalnetze und verallgemeinerte 
Minimalnetze darstellen. Kinematische Einschränkungen, die das Bestimmen der 
Länge ausgewählter Stabelemente ermöglichen, sind eingeführt. Der Einsatz von 
Newton-Krylov-Verfahren beim Lösen nichtlinearer Gleichgewichtsgleichungen ist 
analysiert und die iterative Anwendung der Kraftdichtemethode, bei der die Kraftdichte 
in jedem Iterationsschritt aufgrund der gegebenen Konditionen und der Resultate im 
vorherigen Schritt ermittelt wird, ist ebenfalls beschrieben und untersucht.
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1. Introduction

Most structural elements take over and transfer loads through 
various stresses and their combinations: tension, compression 
and shear. This results in complex distribution of stresses that 
can be seen in photoelastic experiments. However, the cable has 
a negligible flexural stiffness, insufficient to enable transfer of 
greater forces applied perpendicular to its axis. In addition, it can 
not take over compressive forces. That is why, when subjected 
to load, the cable changes its shape to enable development of 
balanced tensile forces, with uniform distribution of tensile 
stresses along the cross-sectional area. That is why cables 
significantly change the equilibrium configuration if forces 
acting on them change their position, direction, or orientation. 
On the other hand, as all cross-sectional points are equally 
stressed, cables are highly efficient in transferring forces.
As the cable, taken by itself, changes the equilibrium 
configuration at the change of load, the shape of flexible cable 
structures is maintained by arranging cables into a net that 
forms an anticlastic surface (surface with negative Gaussian 
curvature). In simplest cases, there are two families of cables: 
concave cables assume load (dominant gravitational load), 
while convex cables, spread approximately perpendicular to 
concave cables, are used for stabilisation. In addition, cables 
must be prestressed as the tensile stress in the entire net 
must be maintained at all load combinations. For instance, 
cable families may exchange their roles in case of wind action.
Consequently, the geometric shape and prestressed force 
values are of crucial significance for the static (and, of course, 
dynamic) behaviour of flexible cable structures – the anticlastic 
shape and prestressing provide the so called geometric stiffness 
to such structures. Conversely, their shape is determined by 
the laws of statics: the geometric shape is a direct reflection 
of the force system in equilibrium; an arbitrarily selected shape 
and prestressing force values will hardly meet equilibrium 
requirements. Here we are in presence of a certain paradox: 
seemingly free, scattered, almost organic forms of prestressed 
cable structures (Figure 1) are in fact determined with stringent, 
inexorable and unyielding laws of statics [1].

The first phase in the design of a prestressed cable structure 
is therefore the definition of its form, i.e. form finding, 
before application of the service load, most often with the 
neglect of the structure’s own weight. The term form finding 
implies determination of an initial equilibrium configuration 
that comprises the geometric shape of the structure and 
prestressing force values.
Until the end of the 1960s, the only way to define form was 
through establishment of physical models. Frei Otto used 
models made of fabric and wire and soapsuds membranes for 
his projects [1]. Although physical models give a useful insight 
into the behaviour of flexible structures, it is very difficult, even 
with photogrammetric procedures, to determine with sufficient 
accuracy coordinates of individual points, not to mention a 
more accurate determination of force and stress values. That 
is why computational models and methods have started to 
develop quite early.
A detailed presentation of different form finding procedures for 
prestressed structures is given in [2, 3], and so we will give only 
a short overview, by selectively mentioning only some of these 
procedures.
One of first computational methods is an extension of the 
geometrically nonlinear calculation of hinged bar elements 
by means of the displacement method: the trial configuration 
deflects when subjected to nonuniform prestressing forces 
(great displacements with small deformations) and thus 
it gradually approaches an equilibrium configuration [4]. 
Unfortunately, displacements and forces are hard to control 
during this process, and so compressive forces may occur at 
some parts of the cable. In addition, as this is a displacement 
method variant, the constitutive relation between the 
displacement and force should be assumed, but this relation 
does not have to correspond to the real material because, as 
will be demonstrated, the form finding is a static problem.
In the force density method, which was developed in the early 
1970s by H.-J. Schek, K. Linkwitz and their associates, the 
nonlinear problem of form finding was linearized through a 
"different association" of values which has lead to the notion 
of force density [5-7]. The paper [7] contains derivation of the 

Figure 1. Frei Otto: German pavilion at the Expo ’67 in Montreal
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method’s equations based on the full system of equilibrium 
equations, compatibility equations, and constitutive equations, 
with the use of the least-squares method. The force density 
methods will be described in more detail in Section 7, but the 
equations will be derived directly, from equilibrium equations. 
This method is often applied even today, and its numerous 
extensions and generalisations have so far been developed. 
The nonlinear variant of the force density method, allowing 
for definition of additional constraints, has been introduced 
already in [5].
The form finding problem can also be understood as a 
variational problem, i.e. a minimum finding problem [8-10] or, 
as will be shown in Section 5, as a more general problem of 
finding stationary points of some functions. We consider that 
this is the most natural approach.
In paper [11] the authors assert that "basic parameters" for 
finding the form of fabric structures are: surface topology, 
surface geometry, geometric boundary conditions, stress 
distribution, and the volume and area forces. Although included 
in basic parameters, the volume and area forces (self-weight, 
load) are seldom (as already indicated) introduced in calculation 
in the form finding phase. The form finding tasks are formulated 
depending on which parameters are defined, and which ones 
are considered to be the unknowns. In the context of cable 
structures, we will speak of the net topology and net geometry 
and, instead of stress distribution, we will speak of values of 
prestressing forces in cables.

2. Computational model of cable nets

For the purposes of forming the computational model of cable 
nets, it can be assumed that cables are fully flexible and that they 
are weightless. As only the form finding phase will be considered, 
no external load will be applied. If prestressing tensile forces are 
introduced into cables, contact forces will act in between them 
at cable crossing points. If cables can slide one over another 
without friction, these forces will be normal to contact surfaces, 
while in case of friction tangential components will also be 
introduced. As contact forces act on negligibly small areas, the 
contact forces shall be taken to be concentrated. Because of the 
assumed absolute flexibility, the cable subjected to concentrated 
forces only shall assume the form of planar or spatial polygonal 
line, in such a way that sections between points in which cable 
cross will be straight (Figure 2). Although due to cable thickness 
their axis do not intersect at crossing points, it will be assumed 
that these crossing points are geometrical points, i.e. that cable 
axes actually intersect at such points. Taking into account these 
assumptions, it can be supposed in the computational model 
that cable sections between the crossing points are hinged 
bar elements, and that the crossing points are hinged nodes to 
which elements are centrically attached. The hinged bar system 
can also be used as computational model in the phase in which 
the behaviour of the net when subjected to various loads is 
calculated, provided that these loads are represented by means 
of concentrated forces in nodes.

Figure 2. Node i, attached elements and neighbouring nodes

In addition to internal nodes in which cables cross, the net 
will also have support nodes in which cables are linked with 
"rigid" boundary and, less often, internal linear and point 
supports. The term "rigid" supports means "traditional" 
structural elements such as beams, arches, "masts", and 
"anchors" which, evidently, are not absolutely rigid, but nodes 
on them can be considered to be fixed. Positions of support 
nodes are defined in advance – in the computational model 
these are geometrical boundary conditions. One of the ways 
in which designers can influence the net form is to change the 
arrangement and form of fixed supports or, in the model, of 
geometrical boundary conditions. At that, changed boundary 
conditions are the input data for the repeated form finding 
procedure.
As positions of internal nodes are the unknowns in the form 
finding phase, these nodes will also be referred to as free nodes.
The set of free node labels will be denoted by Nf, and the set 
of support node labels by Ns. The number of free nodes is nf = 
cardNf, while the number of support nodes is ns = cardNs. The 
following is valid for the set of all node labels N = Nf  Ns, as Nf 

 Ns = Ø and this gives n = cardN = nf + ns. 
The element between the nodes i and j will be denoted by  
(i, j), and the set of labels of all elements by B; the number of 
elements will be nb = cardB . The nodes that are linked with 
elements by the node i will be called "neighbours" to node i, 
and the set of their labels will be denoted by Ni.
The net topology describes the connection between elements 
and nodes: elements "belonging" to a cable, elements attached 
to a node, "neighbours" to a node, etc. The net topology is 
defined in advance.
The geometry of the net form is a crucial parameter for form 
finding. The net form must meet structural, functional and 
aesthetic requirements. In the computational model, it is 
defined by nodal coordinates. As the required net form is an 
equilibrium configuration of prestressing tensile forces in the 
system formed of hinged bars, coordinates of free nodes are 
basic unknowns in the form finding procedure. In some cases 
it is appropriate, and even necessary, to introduce, in addition 
to force equilibrium requirement in nodes, some additional 
requirements expressed in form of kinematic constraints that 
link unknown coordinates.
The values of prestressing tensile forces in cables or elements 
can be defined in advance, but may also be considered as 
unknowns that are determined by node balancing and, 
perhaps, by meeting additional kinematic requirements. 
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3. Equilibrium of free node i

Nodal equilibrium equations, which are affected solely by 
prestressing forces in connected elements, form the basis for 
finding the form of prestressed cable structures.
Three equilibrium equations – equilibrium equations of force 
projections in connected elements on three coordinate axes - 
can be written for each free node i:
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is length of the element (i, j). If (2) and (3) are inserted into (1), 
the nonlinear algebraic equation system will be obtained 
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for i ∈ Nf. Thus the system contains 3nf equations. 

Any set of nf coordinate triples (xi, yi, zi), i ∈ Nf, and nb force 
values Si,j, (i, j) ∈ B, which is compliant with these equations, 
forms an equilibrium configuration. Equations of the system (4) 
do not contain functions or coefficients (such as, for instance, 
coefficients of the stiffness matrix in the displacement 
method) that express the constitutive relation between 
cable extensions and force values in cables. Therefore, the 
equilibrium configuration of the net is independent of the 
cable elasticity moduli and cross-sectional areas of cables. 
Thus the form finding problem is a static problem, and its 
solution is a "pure, non-materialised figure of equilibrium" [6].

4. Minimal cable net

The total length of cables within a net is expressed with the 
function L , which is defined with the following expression: 

L
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Although the expression for the total cable length includes 
coordinates of all nodes, the coordinates of support nodes are 
known, and so L is the function of free node coordinates, L : 
R3nf → R. If we equate its derivatives with respect to free node 
coordinates to zero, we obtain the system of 3nf equations 
with 3nf unknowns: 
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fori ∈ Nf Its solution are free node coordinates for which the 
function L assumes minimal value. The expression for derivative 
of the function L with respect to one of coordinates of the node 
i will contain only addends which contain in their numerator the 
same coordinate of neighbouring nodes. For instance,
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The solution of the system can also be understood as root of 
vector function of a vector variable,

f(xf) = 0,

where f : R3nf → R3nf, and coordinates of free nodes are lined up 
in the vector xf ∈ R3nf. If S is the constant, S ≠ 0, then we have 
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which means that the "position" of the minimum (point in 
space R3nf) does not change; the only thing that changes is 
its value. Consequently, if force values in all elements (i, j) are 
equal, Si,j = S, then the system (4) can be interpreted as an 
expression of requirements of minimal total cable-length: 
free node coordinates, obtained as solution of the system, 
provide the form of the net for which the sum of cable lengths 
is smaller than the sum of cable lengths in any other form 
that the net can assume. This form of the net is called the 
minimal or geodetic cable net; as already shown, it does not 
depend on the value of force S from the formal mathematical 
standpoint, but the force has to be tensile for a physically 
achievable solution, S>0.
Minimal nets over the plan-view area [0, 1] × [0, 1], with 
boundary nodes whose coordinates comply with the equation 
z = ½xy, are presented in Figures 3.a) and b); net cables in 
Figure a) are generatrices of a hyperbolic paraboloid. Minimal 
nets presented in Figures 3.c) and d) are spread over the plan-
view area [-1, 1] × [-1, 1]. Coordinates of their boundary nodes 
are compliant with the equation z = ln (cosx / cosy).
Examples from Figure 3 have been solved using the program 
function newton_krylov, contained in the program package 
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SciPy [12] which is, together with many others, included in the 
symbolic program package Sage [13, 14]. This function is the 
implementation of the Newton-Krylov procedure for solving 
the nonlinear equation systems, i.e. for finding the root of the 
vector function of the vector variable [15, 16]. The Newton-
Krylov procedure is a variant of the known Newton-Raphson 
procedure [15, 17]. In every step of the external Newton-
Raphson loop, linear systems

f (x(k)) + J(k) (x-x(k)) = 0

are solved by the selected Krylov iteration procedure (internal 
loop) and, at that, the products of the Jacobian matrix J(k) = 
∇f(x(k)) and vector v are calculated directly, without calculation 
of the matrix itself, in such a way that they are approximated 
by numerical derivation

J(k)v ≈ [f(x(k) + ev) - f(x(k))]/e

where e is a small number, somewhat greater that the root of 
mechanical precision of the real number representation emach.
The following Krylov procedures can be used in the newton_
krylov function for solving linear equation systems: Conjugate 
Gradient Squared (cgs), BIConjugate Gradient STABilized 
(bicgstab), MINimum RESidual (minres), Generalized Minimal 
RESidual (gmres) [15] i "Loose" GMRES (lgmres) [18].
The global convergence in the newton_krylov function is 
ensured by line search. At that, the Armijo criterion without 
an additional curvature criterion or with this criterion (Wolfe 
criteria) is used for the step length determination [15].
Symbolic capabilities of the Sage program are used for 
preparation of the vector function of the vector variable 
(introduction of a set of symbolic variables for node 
coordinates, definition of the functions li,j and L, differentiation 
of the function L with respect to its variables), which is the 
input parameter for the newton_krylov function.
The data about duration of the net form finding calculations 
from Figure 3.b) are shown in Table 1. The net has 25 free 
nodes, which means that the system contains 75 equations 
with 75 unknowns. For initial approximation, it was assumed 
that all free nodes lie in the plane z = 0 forming a regular net. 
The criterion for interruption of the iteration procedure was 
║r(k)║∞ ≤ 6·10-6, where r(k) = f(xf

(k)) is the residual.
To enable minimal configuration of the net, the sliding of 
cables one over another must not be prevented during the 
prestressing procedure. Only after the final minimal form has 

been achieved, cables are connected in points in which they 
cross one another, so as to increase stiffness of the net and 
to prevent additional sliding of cables after application of load. 
Several cable connection possibilities are presented in Figure 
4. (to avoid the use of great-diameter cables, larger nets are 
often realized with two parallel cables of smaller diameter, 
Figures 4.c i 4.d).

Table 1.  Duration of calculations using variants of the 
Newton-Krylov procedure

5. Generalised minimal cable nets

It can easily be seen that for different force values Si,j the 
equilibrium equation system (4) expresses requirements for 
minimum of function E given by the expression

Linear system 
solving procedure

Line 
search 

Number of 
external loop 

steps

Duration of 
calculation 

cgs armijo 5 45,21 s

cgs wolfe 4 44,22 s

bicgstab armijo 5 36,98 s

bicgstab wolfe 4 36,23 s

minres armijo 5 22,24 s

minres wolfe 4 25,16 s

gmres armijo 5 27,21 s

gmres wolfe 4 28,62 s

lgmres armijo 5 40,08 s

lgmres wolfe 4 36,32 s

Figure 3. Minimal nets

Figure 4. Cable connections (redrawn from [19])
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If two cables are connected in the node before the force 
values along them are equalised, then the connection must 
transfer from one cable to the other not only the normal 
contact force but also the tangential force (which prevents 
cables from sliding). As one cable passes above or under the 
other cable, their axes do not intersect (they only intersect in 
our computational model). As force values of two elements 
connected in a node are not equal, Si,j ≠ Si,k, the moments of 
these forces with respect to the axis of the transverse cable 
will also not be equal: e Si,j ≠ e Si,k (Figure 5.a). The node will 
rotate so as to reduce the arm of the greater force and balance 
the moments: ei,j Si,j = ei,k Si,k (Figure 5.b). Differences in force 
values in elements of a cable should be as small as possible, 
so as to reduce the node rotation.

Figure 5. Distortion of cable connection

If different cables are tensioned with different forces and 
are linked in nodes only after they slide into the equilibrium 
configuration, force values Si,j will be equal along individual 
cables, and so the nodes will not be distorted. Such nets, with 
different force values in different cables, but with unchangeable 
forces along cables, will be called "natural" generalised minimal 
cable nets (because a "net comes into a natural equilibrium 
configuration if sliding is enabled during prestressing", [10]), 
unlike the "abstract" generalisation in which force values Si,j are 
completely independent from one another. It should however 
be noted that, after connection of cables, force values in nodes 
will change by different amounts under variable loads, and so 
they will not be equal along individual cables even in "natural" 
nets. Nevertheless, these differences will be small compared to 
prestressing force values.

The possibility of assigning different force values in different 
cables greatly increases the set of forms achievable in forming 
prestressed cable structures; at that, proportions of forces in 
cables are significant, rather than their "absolute" values. If forces 
in other cables do not change, the selected cable is tensioned 
due to increase in force, and the total length of elements of 
which it is formed reduces and, at that, the spatial polygonal line 
formed by these elements is straightened and becomes close to 
rectilinear connection at its ends (Figure 6, compare with Figure 
3.b, although a cable is a polygonal line rather than a curve, it is 
often said that its curvature decreases by tensioning.

Figure 6.  Force in one cable: a) 10 times greater; b) 50 times greater 
than the force in other cables

Cable nets in examples shown in Figures 3 and 6 have "rigid" 
edges (e.g. beams), and so coordinates of all edge nodes are 
known. Prestressed structures made of cables are often made 
with edge cables. These edge cables are connected with "rigid" 
structural elements only is some points, usually in terminal 
ones, and so only the coordinates of these "support" nodes are 
known. For that reason, form finding of edge cables becomes 
a part of form finding of the entire net. Force values are much 
greater in edge cables compared to internal cables.
However, as can be seen from examples given in Figure 7, it 
may happen that two or more nodes "slide" into a single point 
along the edge cable. This will happen regardless of force 
values in edge cables – even by considerably increasing these 
forces compared to forces in connected cables it would not be 
possible to prevent the unconfined approaching and merging 

Figure 7.  Approaching of nodes: a), c) and b), d) forces in all cables are equal, e) and f) forces in edge cables 10 times greater than those in internal 
cables 
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of nodes. The approaching of nodes can however be "slowed 
down" by increasing force values in edge cables (Figures 7.a 
and 7.b compared with 7.c, and 7.d and 7.e compared with 7.f), 
but nontrivial "non-singular" balanced state does not exist.
Other than being senseless from the net forming standpoint, 
the node merging causes problems in numerical solution of 
equilibrium equation systems (4). If two nodes fall into a single 
point, the length of the element in between them is equal to 
zero, and differences in individual node coordinates are also 
equal to zero, and so after insertion in equilibrium equations 
– where in addends we have differences in coordinates in 
numerators, and lengths are given in denominators – the 
corresponding addends are indeterminate expressions 0/0, 
which causes interruption of the computer program, most 
often accompanied with an incomprehensible error message. 
This is why sliding will be prevented in points where internal 
cables are connected with edge cable (the connection is 
presented in Figure 8), while the length of elements at edge 
cables will be set by kinematic constraints:

 i j i j, ,=  (7)

for (i,j)∈ Bc; the set of elements with defined lengths is denoted 
by Bc,, and their number by nc, nc = cardBc.

Figure 8. Internal cable and edge cable connection (redrawn from [19])

Kinematic constraints will be introduced in the computation 
by means of Lagrange multipliers [20]. Constraint equations 
will therefore be written as follows: 

 i j i j, ,
− = 0  (8)

where the left side will be multiplied by newly introduced 
variables li,j, called Lagrange multipliers, which will be added 
to the function E. The new function Ec : R3nf + nc → R will thus be 
obtained. It is defined with the expression:
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After derivatives of the function Ec with respect to coordinates 
of free nodes are equated to zero, the following equations are 
obtained (after multiplication with -1)
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for i ∈ Nf,, where Ni
c is the set of labels of "neighbours" to the 

node i which are connected with this node by elements of a 
defined length. The equating with zero of derivatives of the 
function Ec, with respect to the Lagrange multipliers results 
in kinematic constraint equations (8). Equations (10) and 
(8) together form the system containing 3nf + nc equations 
with 3nf + nc unknowns; now, the unknowns are not only 
coordinates of free nodes: the multipliers li,j are also regarded 
as unknowns. Equations (10) can also be written as: 
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λ 0         etc.

from which it can be seen that multipliers li,j are additional force 
values that are needed to provide for the required lengths of 
the elements. This means that we no longer have a full "control" 
over forces in cables – force values defined in edge cables will 
be adapted by li,j values that are not known before the system 
has been solved. And, as could have been expected because we 
have prevented the sliding, the values of forces in elements of 
the edge cable will not be equal to one another.
Figure 9 shows two nets with the defined length of edge cable 
elements. Edge element lengths were selected by means 
of average element-length values on individual edge cables 
as determined after five steps of the force density iteration 
method (Section 8) with allowed sliding of all cables. In all 
internal elements the forces amount to 1. Initial force values 
in edge cable elements amounted to 10. The obtained values 
of li,j range from -0.524 to 0.309, which means that final force 
values in edge cables range from 9.476 to 10.309.

Figure 9.  Minimal nets with edge cables, with the defined lengths of 
sections in between the nodes

The newton_krylov function was also used for solving 
the equation system (10). The convergence is however 
disappointingly slow. For instance, 22 external loop steps were 
needed to find the net form from Figure 9.b using the Armijo 
criterion in line search and lgmres procedure for solving linear 
systems, and by applying the criterion for interruption of the 
iteration procedure ║r(k)║∞ ≤ 1•10-5, and the calculation lasted 850 
s.  The convergence is somewhat faster when the more stringent 
Wolfe criteria are used: 18 external loop steps in 732 s. This is not 
due to a greater number of equations and unknowns (compared 
to Table 1): additional 12 × 3 node coordinates at edge cables 
and 16 multipliers, i.e. additional 36 equilibrium equations and 16 
kinematic constraint equations. The convergence is much slower 
because, as will be shown in the next section, the use of Lagrange 
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multipliers changes the problem from the minimisation problem 
to the saddle point problem.

6. Steiner’s problem

The simplest example of the spatial net is one free node 
connected with the base by four elements and, at that, four 
support nodes are not in a single plane (it can be assumed that 
in Figure 2 the nodes  j, k, l and m are support nodes and that i is 
a free node). A natural generalised minimal net will contain two 
crossed cables. The form finding problem has three unknowns 
– coordinates of free node.
If the spatial aspect is renounced, a free node can be tied to the 
base with three elements. If prestressing forces are introduced 
into elements, the free node will come to the plane that is 
defined by three support nodes. From the static standpoint, 
this is due to the fact that the equilibrium of three forces 
is impossible if they do not lie in the same plane. From the 
standpoint of minimisation of the total length of elements, 
it can easily be seen that the sum of lengths of connections 
of three points in the plane with a point out of plane will be 
greater than the sum of lengths of connections with orthogonal 
projection of this point onto the plane.
In plane, the form finding problem, formulated as a minimisation 
problem, can be expressed in the following way: find the system 
of straight sections linking points A, B and C with the smallest 
possible total length. If expressed in this way, the problem 
carries the name of Jacob Steiner (1796-1863), although the 
problem was set earlier, i.e. in 1646, by Pierre de Fermat (1601-
1665), and was probably partly solved in that very year by 
Evangelista Torricelli (1608-1647) [21].
If all angles of the triangle with vertices A, B and C amount to less 
than 120°, then the unique point F, called the Fermat point, for 
which the sum of segment lengths AF, BF and CF is the smallest 
possible, is the point within the triangle for which the following 
applies ∟AFB =∟BFC = ∟CFA = 120°, (Figure 10.a). The geometric 
proof of the validity of the solution is given, for instance, in [21]. 
If we assume that (A, F), (B, F) and (C, F) are tensioned strings, 
then a simple and brief "static proof" can be proposed: forces are 
equal to one another in all three cables, SA,F = SB,F = SC,F = S, and so 
the equilibrium triangle of forces is equilateral; in an equilateral 
triangle the angles are at 60°, and their co-angles at 120° (Figure 
10.b). In other words, in the Fermat point is the minimum of the 
function defined with the expression

E x y S S S
F F A F B F C F
,

, , ,( ) = + +  

Figure 10. a) Solution to Steiner’s problem, b) equilibrium of three forces

One of geometric constructions of the Fermat point is based 
on the theorem (generalisation of the Thales’ theorem) that 
all inscribed angles of the circle above the same chord, on one 
of its sides, are equal to each other, and that the sum of two 
inscribed angles on different sides of the chord amounts to 
180°. If we make circles above segments AC and BC, whose 
inscribed angles are 120°on those sides of these segments 
where points B and A lie, these circles will intersect, in addition 
to the point C, in the Fermat point F. As on opposite sides of the 
segments their inscribed angles amount to 60°, these circles 
are easy to construct: we will make above segments AC and 
CB equilateral triangles DACB and DCBĀ with vertices on the 
sides opposite to those on which inscribed angles must have 
120°; the circles sought are the circles through vertices of these 
triangles (Figure 11). Third circle, circumscribed to equilateral 
triangle above the segment AB with the vertex C  on the side 
opposite to point C, will also pass through the point F.

Figure 11. Geometric construction of solution to Steiner’s problem

If one angle of the triangle DABC, for instance the angle in the 
vertex C, has 120° or more, then the shortest link between 
the points A, B and C is composed of sections AC and CB (this 
case was defined not earlier than in 1834 [21]). However, if 
we construct, just like in the first case, circles with the chords 
AC and CB, then their arches lying on the same sides of these 
chords as the triangles DACB and DCBĀ, will intersect, i.e. on 
the sides on which inscribed angles have 60° (Figure 12.a)); the 
obtained intersection will be marked with G. Now the angles 
between connections AG and CG and between connections CG 
and BG will have 60°, while the angle between connections 
AG and BG will have 120°. In static interpretation, the point G 
is the node which is the meeting point of elements (A, G), (B, 
G) and (C, G) in which all forces are of equal intensity, but the 
forces SG,A and SG,B are tensile while the force SG,C is compressive 
(Figure 12.b) or vice versa (Figure 12.c). Consequently, the 
described construct minimises the function E given by the 
expression

E x y S S S
G G A G B G C G
,

, , ,( ) = + −  

where S is the intensity of force in elements, S = |SA,G| = |SB,G| 
= |SC,G|.
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As an example of the Steiner’s problem, let the points A(0, 0), 
B(5, 0) and C(1,425; 5) be given. The angles of the triangle DABC 
amount to less than 120°, and so the Fermat point exists 
within the triangle.
The total length of strings, as a function of coordinates of the 
point F in which all strings are linked to each other, amounts to

L��: , ,x y x y x y x y
F F F F F F F F( ) → + + −( ) + + −( ) + −( )2 2 2 2 2 2

5 1 425 5

The graph of the function L is the surface Γ
L
 as presented in 

Figure 13.a). This surface is convex and so it has the lowest 
point, while the function L has a minimum (a function is called 
convex if the connection between any two points in its graph 
is above it or, formally, if the following applies: f (ax + (1 - a) 
y) ≤ a f (x) + (1 - a) f (y).). By equating with zero derivatives of 
the function L with respect to coordinates of the point F, the 
following equation system is obtained

x
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x y
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−
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Derivatives of the function L are not defined in points A, B and 
C: if we insert coordinates of some of them into expressions 
for derivatives, the numerator and denominator of each 
addend will be equal to zero in each expression. This inter 
alia means that the iterative procedure for solving equation 
systems must not be commenced in any of these points. 
Similarly, the iteration will fail if we run into any of them by 
accident during the procedure, and even perhaps if we come 
close to them (due to numerical errors). The lack of derivatives 
is reflected on the surface GL by vertices in points (xA, yA, LA), 
(xB, yB, LB) and (xC, yC, LC); a part around the point (xB, yB, LB) is 
enlarged in Figure 13.b.
The Fermat point is the point F(1,843503; 1,367735).
It is known that iterative procedures for solving nonlinear 
equation systems are sensitive to the choice of the initial 
approximation of the solution [22, 23]. As an example, Figure 
14 shows numbers of steps in external loop during solution of 
the system using the function newton_krylov with the solution 
of the linear system using the gmres method. Each point 
is coloured with the colour that corresponds to the number 
of steps needed to reach the solution (with the accuracy of 
║r(k)║∞ ≤ 1⋅10-5) if the resolution started in that point; it is 

Figure 12. a) Geometric construction of solution to a Steiner’s problem variant. b) and c) Systems of tensile and compressive elements

Figure 13. Graph of the function L
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highly probable that the solution can not be reached from 
points marked with the colour denoting the greatest number 
of steps (we can not make a countless number of steps to 
determine that the procedure is divergent). The area covered 
with a regular net containing 101 × 101 points was selected 
in all four cases. The area in the first figure is square [-5, 10] 
× [-5, 10], and so the entire triangle DABC is included (as we 
know, we can not start from its vertices, and it would not be 
advisable to start from their vicinity), while in the remaining 
three figures the areas measure 5 × 5, 0,2 × 0,2 and 0,002 × 
0,002 with the centre in point C.
We will now set the length of the string (A, F): lA,F = 2 (in the 
solution to the Steiner’s problem it is lA,F = 2,295474). By 
multiplying the introduced kinematic constraint with the 
Lagrange multiplier lA,F and by adding to the function L, we 
obtain the following function

EC x y x y x y: , ,
,F F F A F F F F

λ( ) → + + −( ) + +2 2 2 2
5

x y x y
F F F A F F
−( ) + −( ) + + −( )1 425 5 2

2 2 2 2
,

,
λ

As this is the function of three variables, its graph is a hypersurface 
in the four-dimensional space. The cross-section of the 
hypersurface and hyperplane xF = 1,604358 is a surface in the 
three-dimensional space of this hyperplane. In other words, this 
surface is a graph of the function EC (1,604358; ⋅; ⋅) of two variables 
yF and lF,A. As shown in Figure 15.a the axis yF is perpendicular to the 
plane of the drawing, while the axis lF,A is a horizontal axis parallel 
to it. Figure 15.b shows the intersection of graph of the function E 
by the hyperplane yF = 1,194167; now the axis xF is parallel to the 
plane of the drawing, while the axis lF,A is perpendicular to it. And, 
finally, the graph of the function EC (⋅; ⋅; 0,117318) is presented in 

Figure 15.c. This surface is very similar to the graph of the function 
L (Figure 13.a), which is by no means an accident - in fact, L = EC 
(⋅, ⋅, 0). Graphs of all functions EC (⋅, ⋅, lF,A) are convex surfaces for 
selected values of lF,A. However, graphs of the functions EC (xF, ⋅ 
, ⋅) i EC (⋅ , yF, ⋅) are not (Figures 15.a and 15.b). The intersections 
of these surfaces by planes lF,A = const are concave curves, but 
intersections of the first surface by planes yF = const, and of the 
second surface by planes xF = const are straight lines (Figures 
16.a) and b)). In the lowest point of the convex surface, which 
corresponds to the minimum of the function whose surface is a 
graph, the tangential plane is horizontal, and the entire surface is 
above it. Horizontal tangential planes of surfaces from Figure 15.a 
and 15.b also intersect these surfaces (e.g. for surface from Figure 
15.b, Figure 16.c. The point of tangency of the horizontal tangential 
plane which touches and intersects the surface is called the 
saddle point, and the surface itself is called the saddle surface. The 
surface is partly above and partly below the tangential plane in the 
saddle point, which means that the saddle point is not the lowest 
point of the surfaces and that the function, whose graph is this 
surface, does not have a minimum. The equating of derivatives of 
the function with zero expresses stationarity conditions, which are 
minimum conditions for functions with convex graphs only.
As the surfaces EC(xF, ⋅, ⋅) and EC(⋅ ,yF, ⋅)do not have minima 
(although the function EC (⋅, ⋅, lF,A) has a minimum), the function 
EC also does not have a minimum. Stationarity conditions for 
the function EC are 
1 5

5

1 425

1 425 5
2 2 2 2 2

+( )
+

+
−

−( ) +
+

−

−( ) + −

λ
F A F

F F

F

F F

F

F F

, ,

,

x

x y
x

x y

x

x y(( )
=

+( )
+

+
−( ) +

+
−

−( ) + −

2

2 2 2 2 2

0

1

5

5

1 425 5

λ
F A F

F F

F

F F

F

F F

,

,

y

x y
y

x y

y

x y(( )
=

+ − =

2

2 2

0

2 0x yF F

Figure 14. Number of steps until solution of the Steiner’s problema

Figure 15. Graphs of functions EC (1,604358; ⋅; ⋅), EC (1,194167; ⋅; ⋅) and EC ( ⋅; ⋅ ; 0,117318)
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The point (1,604358; 1,194167; 0,117318) is stationary, and so 
the F(1,604358; 1,194167) and lF,A = 0,117318. Thus if we wish 
the string length (A,F) to be lF,A = 2, the force relationships in 
strings must be SF,A : SF,B : SF, = 1,117318 : 1 : 1. 
The problem of finding the saddle point of the function is 
much more difficult than the problem of finding its minimum. 
Intuitively, while during finding the minimum of the function 
the "downward descent" ensures a proper way of getting closer 
to the solution, in the problem of finding the saddle point this 
can be a descent to the Dante’s ninth circle of hell, i.e. to -∞.
Jacobian matrices have a special structure in problems 
involving saddle points. Kinematic constraint equations do 
not contain Lagrange multipliers, and so derivatives of their 
left sides with respect to multipliers are zero. Consequently, if 
kinematic constraint equations are lined up after equilibrium 
equations, and Lagrange multipliers, as unknowns, after free 
node coordinates, the bottom right block of the Jacobian 
matrix will be a quadratic zero-matrix of type nc × nc. In our 
example, the lF,A is the third unknown, and the kinematic 
constraint equation is the third equation in the system that 
expresses stationarity conditions, and so the Jacobian matrix, 
as calculated at the point (1; 1; 0.1), is 

J =
−

−
0 649001 0 357960 0 707107

0 357960 0 619953 0 707107

0 7071

, , ,

, , ,

, 007 0 707107 0,

















This matrix is not positive definite, which limits the number 
of methods by which the linear system can be solved (the 
applicable methods are gmres and lgmres).
Figure 17 shows the number of steps that are needed to solve 
the equation system using the newton_krylov function and 
the gmres method. As the system now has three unknowns, 
initial values of the two of them were varied. In the Figures 
17.a and 17.b, coordinates of the initial point have changed 
in the same area as in Figure 14.a. At that, the initial value 
of the Lagrange multiplier in Figure 17.a amounted to l(0)

F,A 
= 0,117318, while in Figure 17.b it was l(0)

F,A = 1. Comparison 
with Figure 14.a reveals that the convergence is now slower.

Figure 17. Number of steps until solution of the saddle point problem

7. Force density method

If the relationships Si,j/li,j in the equilibrium system (4) are 
denoted qi,j, the system becomes

j
i j j i

j
i j j i

j
i j j i

i i i

q x x q y y q z z
∈ ∈ ∈
∑ ∑ ∑−( ) = −( ) = −( ) =
  

, , ,
, , �0 0 0  (11)

for i ∈ Nf. Values

q Si j i j i j, , ,
/=   (12)

are called force densities.

Force densities qi,j can be set instead of force values Si,j. 
Therefore, force values in elements and node coordinates are 
unknowns (total of nb + 3nf  unknowns), but the unknowns are 
linked with additional nb equations (12). However, additional 
equations do not complicate the solution of the system. On the 
contrary: in equations (11) qi,j are constant coefficients, and so 
it can easily be seen that the equilibrium equation system has 
been „broken down" into three separate systems of nf linear 
algebraic equations each with nf unknowns {xk}k∈Nf, {yk}k∈Nf i 
{zk}k∈Nf. These systems are not homogeneous as coordinates 
of support nodes are known, and so qi,jxj, qi,jyj, qi,jzj are free 
members for ∈Ns, and they are different from zero, at least 
in some equations. If all equations are multiplied by the same 
number, the solution to the system will not be changed, which 
means that it only depends on force density ratios in elements.

Figure 16.  a) i b) Intersections of surfaces EC (1,604358; ⋅; ⋅) and EC (⋅; 1,194167; ⋅) by vertical planes; c) Tangential plane of the surface EC (⋅; 
1,194167; ⋅) in the saddle point
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As coordinates of free nodes are obtained as the solution 
of the system, the expression (3) can be used to calculate 
the lengths li,j  of all elements, and then the forces in these 
elements because, according to (12), they arei,j = qi,j li,j.
For sake of completeness, and in accordance with 
presentations given in sections 4 and 5, we should also mention 
variationalformulation of the force density method: H.-J. Schek 
has already noted in [5] that force density method equations 
(11) express conditions for minimum of a function

D x y z qk k k k
i j

i j i j
f

, ,
,

, ,{ }( ) =∈
( )∈
∑N
B

1

2

2


and so for equal force densities in all elements, qi,j = q,  the solution 
to these equation is given by the net form for which the sum of the 
cable length squares is a minimum value.
As the systems (11) are linear, they can also be solved by a direct 
procedure such as the Gaussian elimination; in this case, initial 
approximate coordinates of free nodes (approximate net form) 
need not be assumed.
Each solution obtained by the force density method, for any 
distribution of force densities along elements of the net of a 
given topology, is an equilibrium configuration. The force density 
distribution should be selected (among ∞nb of possible ones) in 
such a way that the final net form is compliant with structural 
and architectural requirements. However, the term force density 
is an "artificial" term, derived from formal manipulation of 
mathematical expressions. The form of the net, and distribution 
of prestressing forces in the net, must be assumed based on the 
ratio of two values – one static and the other geometric. One of the 
coauthors of the method proposes in paper [6], based on "many 
investigations and practical experiments [...] very simple, rather 
trivially prescribed force densities are sufficient to generate figures 
of equilibrium serving as a start in the formfinding process". Lets 
assume that the net of a given topology is spread out on the 
ground between supports. Unit force densities are assigned to 
elements in the internal area of the network, where they are of 
approximately equal length and, in boundary areas, often irregular 
in shape, where the lengths of elements that are connected to 
supports or edge cables are notably different, the elements should 
be assigned force densities that are inversely proportional to their 
lengths (at that the element length in the interior is taken to be 
a unit value). This recommendation can in fact be complemented 
with an intuitive explanation. If cable length ratios in equilibrium 
configuration are not significantly altered with respect to the 
ratios in the initial, "spread out" configuration, then force values 
in elements will be approximately the same and, even if greater 

differences are noted, it may be expected that force values along 
cables will change only gradually, in smaller increments, so that 
the rotation of nodes (Figure 5) will not be great.
Two networks defined by the force density method are presented 
in Figures 18.a and 18.b; the first one is the net of equal topology 
and of equal boundary conditions ("rigid" supports along edges) 
as a minimal net in Figure 3.b, while the topology and boundary 
conditions (edge cables, with "rigid" supports in corner nodes only) 
of the second net are similar to those given for the net shown in 
Figure 9.b. In the first case all elements are assigned unit force 
densities and, in the second case, force densities in edge cables 
are ten times greater that densities in internal ones; as both plan-
view areas are regular, it was not necessary to attribute some 
other force densities to internal elements linked with supports or 
to edge cables. In the net shown in Figure 18.b the greatest and 
the smallest force values in internal cables are 1.834 and 1.234, 
respectively, while force values in elements of the diagonal cable 
linked to the highest node are in an ordered manner, starting from 
the lowest, 1,547; 1,434; 1,391; 1,394; 1,435; 1,515; 1,637; 1,834. In 
edge cables, the maximal and the minimal force values are 22.924 
and 19.966, respectively.
For the sake of comparison, in Figure 18.c, the minimal network 
from Figure 3.b was placed over the network defined by the force 
density method from Figure 18.a, while in Figure 18.d), the network 
from Figure 9.b was placed over the network form Figure 18.b. As 
indicated in the cited paragraph from paper [6], the form obtained by 
the force density method is just "a start in the formfinding process". 
It is usually indicated in literature that a number of attempts is 
needed to find force density values that provide an acceptable 
solution, but more detailed recommendations are lacking.
A systematic procedure by which various requirements specified in 
sections 4 and 5 can be met by an iterative use of the force density 
method will be introduced in the following section. The analogy of 
this method and the displacement method described in paper [24] is 
applied in the program implementation of the force density method.

8. Iterative use of the force density method

In paper [8], the authors describe "an iterative procedure devoted 
to the calculation of a uniform tension net and consequently a 
minimal length net". In the kth-step of iteration, the force density 
in the element (i, j) is calculated according to the expression

q q S
Si j

k
i j
k

i j
k, ,

,

( ) −( )
−( )= 1

1

where 

Figure 18. a) and b) Nets formed by the force density method. c) and d) Comparison with minimal networks
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qi,j
(k-1)  - force density in the preceding step,

Si,j
(k-1)  - force value calculated in the preceding step,

S  - required force value. 

This expression can be explained in the following way: 

Lets assume that the force value Si,j
(k-1), calculated in the (k-1)-

th step of the iteration, is different from the required value S.
The required value can be obtained by multiplying the value 
Si,j

(k-1) with the coefficient si,j
(k), S = si,j

(k) Si,j
(k-1),  so that the si,j

(k) 
= S /Si,j

(k-1). Once coordinates of nodes and lengths li,j(k) are 
calculated in the k-th step, the new force value is Si,j

(k)= qi,j
(k) l,j(k). 

If the length of the element does not change, then we have 
Si,j

(k)= qi,j
(k) l,j(k-1). Furthermore, if theSi,j

(k) is the required value, 
then we have Si,j

(k)= si,j
(k) Si,j

(k-1)= si,j
(k) qi,j

(k-1) li,j(k-1). By comparison 
with the preceding expression we obtain qi,j

(k)= si,j
(k) qi,j

(k-1).  
Consequently, if the length of the element does not change, 
the force density qi,j

(k)= qi,j
(k-1) S /Si,j

(k-1) immediately provides the 
required force value. However, the change in force density 
most often results in the change of equilibrium configuration 
of the network, and so the lengths of the elements also 
change. An iterative calculation is therefore needed so that 
the required value can gradually be approached. 
The preceding explanation can be summarized as follows: 
according to definition given in expression (12), the force 
density qi,j is proportional to the force value Si,j and so, with an 
unchanged element length, the ratio of forces in two iteration 
steps is equal to the force density ratio.
In their examples, authors limit their discussion to the nets 
with "rigid" edges – the procedure does not enable control of 
force values in edge cables, nor does it provide for different 
force values in different cables.
Nevertheless, the described procedure can easily be extended: 
if we wish to achieve different force values in different 
elements, then the force density in the element (i, j) will be 
calculated in the k-th step of iteration according to the 
expression

q q
S
Si j

k
i j
k i j

i j
k, ,

,

,

( ) −( )
−( )= 1

1
 (13)

At that, the Sij is the required force value in that element, which 
can be different from force values in other elements [9, 10]. 
Obviously, if we wish to form a natural generalised minimal 
net, then we have to assign equal force values in all elements 
of individual cables. As qi,j/Si,j = 1/li,j, the force density can also 
be calculated according to the following expression:

q
S

i j
k i j

i j
k,

,

,

( )
−( )=



1  (14)

Furthermore, the specified length li,j of the element (i, j) will 
be obtained by calculating the force density in the element 
according to the expression 

q
S

i j
k i j

k

i j
,

,

,

( )
−( )

=
1



 (15)

Namely, the force density is, according to the definition, 
inversely proportional to the element length and so, with the 
unchanged force value, we have qi,j

(k)/qi,j
(k-1) = li,j(k-1)/li,j(k). That 

is why the coefficient by which the force density form the 
preceding step should be multiplied is Sij

(k-1)/li,j, and from

q qi j
k

i j
k i j

k

i j
, ,

,

,

( ) −( )
−( )

= 1

1


  
(16)

and Si,j= qi,j li,j we arrive to the expression (15). 

The above described iterative application of the force density 
method presents a number of advantages. First of all, the 
procedure converges toward the required solution through a 
set of equilibrium configurations. Therefore, even if the iterative 
procedure is interrupted before the specified conditions have 
been met with sufficient accuracy, we have still obtained a net 
that is in equilibrium. Unlike that, in other iterative procedures, 
such as the Newton-Krylov procedure, only the final solution is 
in equilibrium. Configurations obtained in preceding steps are 
unbalanced approximations of the required form. The second 
advantage is that not only the specified forces but also the 
specified element lengths are obtained without introducing 
Lagrange multipliers. And, thirdly, as we have mentioned in 
the preceding section, the first approximation of the solution 
need not be assumed, namely because equation systems are 
linear, and can therefore be solved with direct procedures.
In addition, the procedure is very rapid. Although it could 
be said that it converges slowly as, for instance, 128 and 
299 steps were needed to find the form of the net shown 
in 3.b) and 9.b), the calculations lasted no more than 3.55 s 
and 14.40 s, respectively. The iteration procedure interrupts 
when an absolute value of the maximum difference between 
the calculated value and required value (force in element or 
element length) is less than 1 10-5.

9. Conclusions

The form finding problem is formulated as a variational 
problem aimed at determining stationary points of specific 
functions, and so minimal nets and generalised minimal 
nets can be regarded as possible solutions. Minimal nets 
are equilibrium forms if the distribution of prestressing force 
values is uniform [8] while the generalisation, which can also 
be formulated as a minimisation problem, is the possibility of 
assigning various force values in net elements [9, 10].
Kinematic constraints that enable assignment of lengths to 
selected elements are introduced as an additional generalisation. 
The variational formulation of this generalisation, involving the 
use of Lagrange multipliers, is the saddle point problem. Numerical 
experiments have shown that the speed of convergence, and the 
very convergence of "traditional" iterative procedures, have been 
greatly disrupted. Numerical solution of a traditional problem of 
variational calculation, the Steiner’s problem, is analyzed so as 
to provide a vivid explanation of behaviour of such procedures.
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Finally, the iterative use of the force density method is 
presented. Here, force densities are determined for a given step 
based on specified conditions and results from the preceding 
step. In addition to known force-density expressions that 
enable shaping of minimal nets and generalised minimal nets 
with various force values in elements [9, 10], additional force 

density expressions are introduced for meeting kinematic 
constraints which prevent change in length of selected 
elements. A series of numerical experiments has revealed 
that the iterative use of the force density method is an 
adaptable, efficient and reliable tool for finding form of flexible 
cable structures.
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